Research Fronts and Prevailing Applications in Data Envelopment Analysis

Research activities relating to data envelopment analysis (DEA) have grown at a fast rate recently. Exactly what activities have been carrying the research momentum forward is a question of particular interest to the research community. This study finds these research activities, or research fronts, as well as some facts on applications in DEA. A research front refers to a coherent topic or issue addressed by a group of research articles in recent years. The large amount of DEA literature makes it difficult to use any traditional qualitative methodology to sort out the matter. Thus, this study applies a network clustering method to group the literature through a citation network established from the DEA literature over the period 2000–2014. The keywords of the articles in each discovered group help pinpoint its research focus. The four research fronts identified are “bootstrapping and two-stage analysis”, “undesirable factors”, “cross-efficiency and ranking”, and “network DEA, dynamic DEA, and SBM”. Each research front is then examined with key-route main path analysis to uncover the elements in its core. In the end, we present the prevailing DEA applications and the observed association between DEA methodologies and applications.

[1]  Zhimin Huang,et al.  The performance evaluation of regional R&D investments in China: An application of DEA based on the first official China economic census data , 2011 .

[2]  R. G. Dyson,et al.  Data envelopment analysis, operational research and uncertainty , 2010, J. Oper. Res. Soc..

[3]  Joe Zhu,et al.  Multi-factor performance measure model with an application to Fortune 500 companies , 2000, Eur. J. Oper. Res..

[4]  Joseph C. Paradi,et al.  Two-stage evaluation of bank branch efficiency using data envelopment analysis , 2011 .

[5]  Joe Zhu,et al.  Data envelopment analysis: Prior to choosing a model , 2014 .

[6]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[7]  Chiang Kao,et al.  Efficiency decomposition in network data envelopment analysis: A relational model , 2009, Eur. J. Oper. Res..

[8]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[9]  Lawrence M. Seiford,et al.  Data envelopment analysis: The evolution of the state of the art (1978–1995) , 1996 .

[10]  R. Ramanathan,et al.  Estimating energy consumption of transport modes in India using DEA and application to energy and environmental policy , 2005, J. Oper. Res. Soc..

[11]  Timo Kuosmanen,et al.  The law of one price in data envelopment analysis: Restricting weight flexibility across firms , 2003, Eur. J. Oper. Res..

[12]  Fotios Pasiouras,et al.  Assessing Bank Efficiency and Performance with Operational Research and Artificial Intelligence Techniques: A Survey , 2009, Eur. J. Oper. Res..

[13]  Adel Hatami-Marbini,et al.  A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making , 2011, Eur. J. Oper. Res..

[14]  Thomas R. Sexton,et al.  Network DEA: efficiency analysis of organizations with complex internal structure , 2004, Comput. Oper. Res..

[15]  Toshiyuki Sueyoshi,et al.  Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry , 2012, Eur. J. Oper. Res..

[16]  John S. Liu,et al.  Recent trend in graphene for optoelectronics , 2013, Journal of Nanoparticle Research.

[17]  Norman P. Hummon,et al.  Connectivity in a citation network: The development of DNA theory☆ , 1989 .

[18]  C Serrano Cinca,et al.  Selecting DEA specifications and ranking units via PCA , 2004 .

[19]  Chiang Kao,et al.  Efficiency decomposition for general multi-stage systems in data envelopment analysis , 2014, Eur. J. Oper. Res..

[20]  Timo Kuosmanen,et al.  Measuring economic efficiency with incomplete price information: With an application to European commercial banks , 2001, Eur. J. Oper. Res..

[21]  Jie Wu,et al.  Environmental efficiency evaluation based on data envelopment analysis: A review , 2012 .

[22]  Terry Rowlands,et al.  How to better identify the true managerial performance: State of the art using DEA , 2008 .

[23]  Toshiyuki Sueyoshi,et al.  Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment , 2011, Eur. J. Oper. Res..

[24]  Kaoru Tone,et al.  Decomposing capacity utilization in data envelopment analysis: An application to banks in India , 2009, Eur. J. Oper. Res..

[25]  Joe Zhu,et al.  Network DEA: Additive efficiency decomposition , 2010, Eur. J. Oper. Res..

[26]  B. W. Ang,et al.  Slacks-based efficiency measures for modeling environmental performance , 2006 .

[27]  Qiang Zhang,et al.  Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles , 2013, Journal of Nanoparticle Research.

[28]  Toshiyuki Sueyoshi,et al.  Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis , 2010 .

[29]  Larry Jenkins,et al.  A multivariate statistical approach to reducing the number of variables in data envelopment analysis , 2003, Eur. J. Oper. Res..

[30]  Rajiv D. Banker,et al.  Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis , 2008, Oper. Res..

[31]  S. Lozano,et al.  Centralized Resource Allocation Using Data Envelopment Analysis , 2004 .

[32]  Janet M. Wagner,et al.  Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives , 2007, Eur. J. Oper. Res..

[33]  Leonid Churilov,et al.  Towards fair ranking of Olympics achievements: the case of Sydney 2000 , 2006, Comput. Oper. Res..

[34]  W. Cook,et al.  Sales performance measurement in bank branches , 2001 .

[35]  Hsuan-Shih Lee,et al.  A slacks-based measure of super-efficiency in data envelopment analysis: An alternative approach , 2013 .

[36]  K. Chin,et al.  The use of OWA operator weights for cross-efficiency aggregation , 2011 .

[37]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[38]  Toshiyuki Sueyoshi,et al.  Performance analysis of US coal-fired power plants by measuring three DEA efficiencies , 2010 .

[39]  K. Tone,et al.  Dynamic DEA: A slacks-based measure approach , 2010 .

[40]  Léopold Simar,et al.  How to measure the impact of environmental factors in a nonparametric production model , 2012, Eur. J. Oper. Res..

[41]  Hirofumi Fukuyama,et al.  Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking , 2013 .

[42]  Vladimir Batagelj,et al.  Pajek - Program for Large Network Analysis , 1999 .

[43]  John E. Beasley,et al.  Allocating fixed costs and resources via data envelopment analysis , 2003, Eur. J. Oper. Res..

[44]  James M. Utterback,et al.  A dynamic model of process and product innovation , 1975 .

[45]  José L. Ruiz,et al.  On the DEA total weight flexibility and the aggregation in cross-efficiency evaluations , 2012, Eur. J. Oper. Res..

[46]  L. Egghe,et al.  Theory and practise of the g-index , 2006, Scientometrics.

[47]  P. W. Wilson,et al.  Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models , 1998 .

[48]  R. Färe,et al.  Intertemporal Production Frontiers: With Dynamic DEA , 1996 .

[49]  John Ruggiero,et al.  Data envelopment analysis with stochastic data , 2004, J. Oper. Res. Soc..

[50]  Chiang Kao,et al.  Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan , 2008, Eur. J. Oper. Res..

[51]  Paul W. Wilson,et al.  Testing Independence in Models of Productive Efficiency , 2003 .

[52]  D. F. Stewart,et al.  Technical efficiency and productivity change of China's iron and steel industry , 2002 .

[53]  Kaoru Tone,et al.  Dynamic DEA with network structure: A slacks-based measure approach , 2013 .

[54]  J. E. Hirsch,et al.  An index to quantify an individual's scientific research output , 2005, Proc. Natl. Acad. Sci. USA.

[55]  Zilla Sinuany-Stern,et al.  Review of ranking methods in the data envelopment analysis context , 2002, Eur. J. Oper. Res..

[56]  Leâ Opold Simar,et al.  A general methodology for bootstrapping in non-parametric frontier models , 2000 .

[57]  Joe Zhu,et al.  Super-efficiency and DEA sensitivity analysis , 2001, Eur. J. Oper. Res..

[58]  Chien-Ming Chen,et al.  Production , Manufacturing and Logistics A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks , 2008 .

[59]  Hui Wang,et al.  Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach , 2012, Eur. J. Oper. Res..

[60]  Allen N. Berger,et al.  Efficiency of financial institutions: International survey and directions for future research , 1997 .

[61]  Toshiyuki Sueyoshi,et al.  Returns to scale vs. damages to scale in data envelopment analysis: An impact of U.S. clean air act on coal-fired power plants , 2013 .

[62]  Lawrence M. Seiford,et al.  Data envelopment analysis (DEA) - Thirty years on , 2009, Eur. J. Oper. Res..

[63]  Joe Zhu,et al.  Imprecise data envelopment analysis (IDEA): A review and improvement with an application , 2003, Eur. J. Oper. Res..

[64]  Ashok Kumar,et al.  Epistemology of data envelopment analysis and comparison with other fields of OR/MS for relevance to applications , 2004 .

[65]  Joe Zhu,et al.  Evaluation of information technology investment: a data envelopment analysis approach , 2006, Comput. Oper. Res..

[66]  Joe Zhu,et al.  Network DEA pitfalls: Divisional efficiency and frontier projection under general network structures , 2013, Eur. J. Oper. Res..

[67]  Peng Zhou,et al.  A non-radial DEA approach to measuring environmental performance , 2007, Eur. J. Oper. Res..

[68]  Rolf Färe,et al.  Modeling undesirable factors in efficiency evaluation: Comment , 2004, Eur. J. Oper. Res..

[69]  Rodney H. Green,et al.  Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses , 1994 .

[70]  Joe Zhu,et al.  DEA Cobb–Douglas frontier and cross-efficiency , 2014, J. Oper. Res. Soc..

[71]  Robert G. Dyson,et al.  A generalisation of the Farrell cost efficiency measure applicable to non-fully competitive settings , 2008 .

[72]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Joe Zhu,et al.  Sensitivity analysis of DEA models for simultaneous changes in all the data , 1998, J. Oper. Res. Soc..

[74]  Walter Ukovich,et al.  A classification of DEA models when the internal structure of the Decision Making Units is considered , 2010, Ann. Oper. Res..

[75]  Chiang Kao,et al.  Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks , 2009, Eur. J. Oper. Res..

[76]  A. Hailu,et al.  Non‐Parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry , 2001 .

[77]  Eliane Gonçalves Gomes,et al.  Olympic ranking based on a zero sum gains DEA model , 2003, Eur. J. Oper. Res..

[78]  W. Cook,et al.  Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches , 2000 .

[79]  Gang Yu,et al.  An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company , 2001, Oper. Res..

[80]  Timo Kuosmanen,et al.  Best-practice benchmarking using clustering methods: Application to energy regulation , 2014, Omega.

[81]  Nuria Ramón,et al.  Reducing differences between profiles of weights: A "peer-restricted" cross-efficiency evaluation , 2011 .

[82]  Li Qi,et al.  Two-level DEA approaches in research evaluation , 2008 .

[83]  William W. Cooper,et al.  Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis , 2002, J. Oper. Res. Soc..

[84]  Joseph C. Paradi,et al.  Commercial branch performance evaluation and results communication in a Canadian bank--a DEA application , 2004, Eur. J. Oper. Res..

[85]  John S. Liu,et al.  An innovative approach to identify the knowledge diffusion path: the case of resource-based theory , 2012, Scientometrics.

[86]  Chiang Kao,et al.  Efficiency measurement for parallel production systems , 2009, Eur. J. Oper. Res..

[87]  Kaoru Tone,et al.  Network DEA: A slacks-based measure approach , 2009, Eur. J. Oper. Res..

[88]  R. G. Dyson,et al.  Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments , 2005, Eur. J. Oper. Res..

[89]  Mette Asmild,et al.  Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry , 2004 .

[90]  Léopold Simar,et al.  Non-parametric tests of returns to scale , 2002, Eur. J. Oper. Res..

[91]  Louis Y.Y. Lu,et al.  The Knowledge Diffusion Paths of Corporate Social Responsibility – From 1970 to 2011 , 2014 .

[92]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Toshiyuki Sueyoshi,et al.  Measurement of a linkage among environmental, operational, and financial performance in Japanese manufacturing firms: A use of Data Envelopment Analysis with strong complementary slackness condition , 2010, Eur. J. Oper. Res..

[94]  Peng Zhou,et al.  A survey of data envelopment analysis in energy and environmental studies , 2008, Eur. J. Oper. Res..

[95]  Jie Wu,et al.  Achievement and benchmarking of countries at the Summer Olympics using cross efficiency evaluation method , 2009, Eur. J. Oper. Res..

[96]  Sebastián Lozano,et al.  CENTRALISED TARGET SETTING FOR REGIONAL RECYCLING OPERATIONS USING DEA , 2004 .

[97]  José L. Ruiz,et al.  On the choice of weights profiles in cross-efficiency evaluations , 2010, Eur. J. Oper. Res..

[98]  M. Tushman,et al.  Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change , 1990 .

[99]  Esmeralda A. Ramalho,et al.  Fractional regression models for second stage DEA efficiency analyses , 2010 .

[100]  Mohsen Rostamy-Malkhalifeh,et al.  A Review of Ranking Models in Data Envelopment Analysis , 2013, J. Appl. Math..

[101]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[102]  Lawrence M. Seiford,et al.  Modeling undesirable factors in efficiency evaluation , 2002, Eur. J. Oper. Res..

[103]  Joe Zhu,et al.  Measuring performance of two-stage network structures by DEA: A review and future perspective , 2010 .

[104]  Necmi K. Avkiran,et al.  Removing the impact of environment with units-invariant efficient frontier analysis: An illustrative case study with intertemporal panel data☆ , 2009 .

[105]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[106]  Shu-Cherng Fang,et al.  Fuzzy data envelopment analysis (DEA): a possibility approach , 2003, Fuzzy Sets Syst..

[107]  Toshiyuki Sueyoshi,et al.  Measurement of Returns to Scale and Damages to Scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs? , 2011, Eur. J. Oper. Res..

[108]  John S. Liu,et al.  A survey of DEA applications , 2013 .

[109]  Prithwiraj Nath,et al.  Resource, service quality and performance triad: a framework for measuring efficiency of banking services , 2003, J. Oper. Res. Soc..

[110]  Marcos Pereira Estellita Lins,et al.  Review of Methods for Increasing Discrimination in Data Envelopment Analysis , 2002, Ann. Oper. Res..

[111]  Jesús T. Pastor,et al.  A Statistical Test for Nested Radial Dea Models , 2002, Oper. Res..

[112]  John S. Liu,et al.  An integrated approach for main path analysis: Development of the Hirsch index as an example , 2012, J. Assoc. Inf. Sci. Technol..

[113]  Kwai-Sang Chin,et al.  DEA models for minimizing weight disparity in cross-efficiency evaluation , 2012, J. Oper. Res. Soc..

[114]  P. W. Wilson,et al.  Estimation and inference in two-stage, semi-parametric models of production processes , 2007 .

[115]  John S. Liu,et al.  Data envelopment analysis 1978-2010: A citation-based literature survey , 2013 .

[116]  Lawrence M. Seiford,et al.  Stability regions for maintaining efficiency in data envelopment analysis , 1998, Eur. J. Oper. Res..

[117]  L. Seiford,et al.  Profitability and Marketability of the Top 55 U.S. Commercial Banks , 1999 .

[118]  Timo Kuosmanen,et al.  One-stage and two-stage DEA estimation of the effects of contextual variables , 2012, Eur. J. Oper. Res..

[119]  Chiang Kao,et al.  Production , Manufacturing and Logistics Multi-period efficiency and Malmquist productivity index in two-stage production systems , 2013 .

[120]  Joseph C. Paradi,et al.  A survey on bank branch efficiency and performance research with data envelopment analysis , 2013 .

[121]  Yongjun Li,et al.  DEA Models for Extended Two-Stage Network Structures , 2012 .

[122]  Nuria Ramón,et al.  Ranking ranges in cross-efficiency evaluations , 2013, Eur. J. Oper. Res..

[123]  Peijun Guo,et al.  Fuzzy DEA: a perceptual evaluation method , 2001, Fuzzy Sets Syst..

[124]  Louis Y.Y. Lu,et al.  The main paths of medical tourism: From transplantation to beautification , 2014 .

[125]  Liang Liang,et al.  DEA game cross-efficiency approach to Olympic rankings , 2009 .

[126]  Shih-Chang Hung,et al.  Technological change in lithium iron phosphate battery: the key-route main path analysis , 2014, Scientometrics.

[127]  J. Pastor,et al.  Centralized resource allocation BCC models , 2009 .

[128]  P. W. Wilson,et al.  Two-stage DEA: caveat emptor , 2011 .

[129]  Lawrence M. Seiford,et al.  INFEASIBILITY OF SUPER EFFICIENCY DATA ENVELOPMENT ANALYSIS MODELS , 1999 .

[130]  H. O. Fried,et al.  Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis , 2002 .

[131]  Jian-Bo Yang,et al.  Interval efficiency assessment using data envelopment analysis , 2005, Fuzzy Sets Syst..

[132]  John McDonald,et al.  Using least squares and tobit in second stage DEA efficiency analyses , 2009, Eur. J. Oper. Res..

[133]  W. Cooper,et al.  Some models and measures for evaluating performances with DEA: past accomplishments and future prospects , 2007 .

[134]  John S. Liu,et al.  Citations with different levels of relevancy: Tracing the main paths of legal opinions , 2014, J. Assoc. Inf. Sci. Technol..

[135]  Walter Ukovich,et al.  DEA-like models for efficiency evaluations of specialized and interdependent units , 2001, Eur. J. Oper. Res..

[136]  Chiang Kao,et al.  Network data envelopment analysis: A review , 2014, Eur. J. Oper. Res..

[137]  Ali Emrouznejad,et al.  Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years , 2008 .

[138]  Joe Zhu,et al.  Measuring Information Technology's Indirect Impact on Firm Performance , 2004, Inf. Technol. Manag..

[139]  Chiang Kao,et al.  Fuzzy efficiency measures in data envelopment analysis , 2000, Fuzzy Sets Syst..

[140]  Kwai-Sang Chin,et al.  A neutral DEA model for cross-efficiency evaluation and its extension , 2010, Expert Syst. Appl..

[141]  Joe Zhu,et al.  Rank order data in DEA: A general framework , 2006, Eur. J. Oper. Res..

[142]  Necmi K. Avkiran,et al.  Opening the black box of efficiency analysis: An illustration with UAE banks , 2009 .

[143]  Jiazhen Huo,et al.  Super-efficiency based on a modified directional distance function , 2013 .

[144]  Jie Wu,et al.  The DEA Game Cross-Efficiency Model and Its Nash Equilibrium , 2008, Oper. Res..

[145]  Emmanuel Thanassoulis,et al.  Assessing the effectiveness of regional development policies in Northern Greece using data envelopment analysis , 1998 .