Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

[1]  S. L. Lam,et al.  NMR proton chemical shift prediction of C·C mismatches in B-DNA. , 2015, Journal of magnetic resonance.

[2]  Michiaki Hamada,et al.  RNA secondary structure prediction from multi-aligned sequences. , 2013, Methods in molecular biology.

[3]  C. Brooks,et al.  A Simple and Fast Approach for Predicting 1H and 13C Chemical Shifts: Toward Chemical Shift-Guided Simulations of RNA , 2014, The journal of physical chemistry. B.

[4]  Gerhard Wider,et al.  Strategy for automated NMR resonance assignment of RNA: application to 48-nucleotide K10 , 2014, Journal of biomolecular NMR.

[5]  D. Turner,et al.  Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts , 2014, Nature Methods.

[6]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[7]  A. Stelzer,et al.  Prediction of RNA 1H and 13C chemical shifts: a structure based approach. , 2013, The journal of physical chemistry. B.

[8]  Peter Güntert,et al.  Automated and assisted RNA resonance assignment using NMR chemical shift statistics , 2013, Nucleic acids research.

[9]  S. Wijmenga,et al.  Nucleic acid helix structure determination from NMR proton chemical shifts , 2013, Journal of biomolecular NMR.

[10]  Michele Vendruscolo,et al.  Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases. , 2013, The journal of physical chemistry. B.

[11]  Bruce A. Johnson,et al.  Database proton NMR chemical shifts for RNA signal assignment and validation , 2012, Journal of Biomolecular NMR.

[12]  C. Kwok,et al.  NMR proton chemical shift prediction of T·T mismatches in B-DNA duplexes. , 2007, Journal of magnetic resonance.

[13]  Judith M. Fonville,et al.  Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment. , 2012, Chemistry.

[14]  F. Allain,et al.  A procedure to validate and correct the 13C chemical shift calibration of RNA datasets , 2012, Journal of Biomolecular NMR.

[15]  Jeetender Chugh,et al.  Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy , 2011, Nature Methods.

[16]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[17]  Ian H. Witten,et al.  Chapter 1 – What's It All About? , 2011 .

[18]  A. Bax,et al.  SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network , 2010, Journal of biomolecular NMR.

[19]  D. Case,et al.  Major groove width variations in RNA structures determined by NMR and impact of 13C residual chemical shift anisotropy and 1H–13C residual dipolar coupling on refinement , 2010, Journal of biomolecular NMR.

[20]  David S Wishart,et al.  A probabilistic approach for validating protein NMR chemical shift assignments , 2010, Journal of biomolecular NMR.

[21]  Xiang-Jun Lu,et al.  The RNA backbone plays a crucial role in mediating the intrinsic stability of the GpU dinucleotide platform and the GpUpA/GpA miniduplex , 2010, Nucleic acids research.

[22]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[23]  Xiang-Jun Lu,et al.  3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures , 2008, Nature Protocols.

[24]  H. Urlaub,et al.  Isolation of an active step I spliceosome and composition of its RNP core , 2008, Nature.

[25]  T. Steitz A structural understanding of the dynamic ribosome machine , 2008, Nature Reviews Molecular Cell Biology.

[26]  Miron Livny,et al.  BioMagResBank , 2007, Nucleic Acids Res..

[27]  Teresa Carlomagno,et al.  13C-detection in RNA bases: revealing structure-chemical shift relationships. , 2007, Journal of the American Chemical Society.

[28]  Catherine A. Wakeman,et al.  Structural features of metabolite-sensing riboswitches. , 2007, Trends in biochemical sciences.

[29]  H. Noller,et al.  The ribosome in focus: new structures bring new insights. , 2007, Trends in biochemical sciences.

[30]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[31]  F. Boisvert,et al.  The multifunctional nucleolus , 2007, Nature Reviews Molecular Cell Biology.

[32]  A. Ferré-D’Amaré,et al.  Riboswitches: small-molecule recognition by gene regulatory RNAs. , 2007, Current opinion in structural biology.

[33]  Sik Lok Lam,et al.  DSHIFT: a web server for predicting DNA chemical shifts , 2007, Nucleic Acids Res..

[34]  S. L. Lam,et al.  Proton chemical shift prediction of A.A mismatches in B-DNA duplexes. , 2007, Journal of magnetic resonance.

[35]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[36]  Olivier Voinnet,et al.  The diversity of RNA silencing pathways in plants. , 2006, Trends in genetics : TIG.

[37]  K. Schulze-Osthoff,et al.  Regulation of apoptosis by alternative pre-mRNA splicing. , 2005, Molecular cell.

[38]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[39]  Arash Bahrami,et al.  Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications , 2005, Journal of biomolecular NMR.

[40]  V. Kim,et al.  Small RNAs : Classification , Biogenesis , and Function , 2005 .

[41]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[42]  David S Wishart,et al.  RefDB: A database of uniformly referenced protein chemical shifts , 2003, Journal of biomolecular NMR.

[43]  Yong Wang,et al.  Modeling for Optimal Probability Prediction , 2002, ICML.

[44]  V. L. Rath,et al.  Structure and Function of the Eukaryotic Ribosome The Next Frontier , 2002, Cell.

[45]  D. Case,et al.  Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database , 2001, Journal of biomolecular NMR.

[46]  S. Wijmenga,et al.  Prediction of proton chemical shifts in RNA – Their use in structure refinement and validation , 2001, Journal of biomolecular NMR.

[47]  D. H. Faber,et al.  Double‐helical DNA 1H chemical shifts: an accurate and balanced predictive empirical scheme , 2000 .

[48]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[49]  D. Case,et al.  An empirical analysis of proton chemical shifts in nucleic acids , 1999 .

[50]  D. Case Calibration of ring-current effects in proteins and nucleic acids , 1995, Journal of biomolecular NMR.

[51]  Kurt Wüthrich,et al.  NMR in structural biology: a collection of papers by Kurt Wuthrich , 1995 .

[52]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[53]  E. B. Andersen,et al.  Information Science and Statistics , 1986 .

[54]  J. Bachellerie,et al.  The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. , 1984, Nucleic acids research.