Asymptotic equivalence for inference on the volatility from noisy observations
暂无分享,去创建一个
[1] Grace L. Yang,et al. Asymptotics In Statistics , 1990 .
[2] M. Nussbaum,et al. Asymptotic equivalence for nonparametric regression , 2002 .
[3] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[4] Lan Zhang,et al. A Tale of Two Time Scales , 2003 .
[5] Neil Shephard,et al. Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .
[6] Axel Munk,et al. Nonparametric Estimation of the Volatility Under Microstructure Noise: Wavelet Adaptation , 2010 .
[7] Jean Jacod,et al. Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .
[8] I. Ibragimov,et al. Asymptotically normal families of distributions and efficient estimation , 1991 .
[9] P. Mykland. A Gaussian calculus for inference from high frequency data , 2010, Annals of Finance.
[10] Axel Munk,et al. Nonparametric Estimation of the Volatility Function in a High-Frequency Model corrupted by Noise , 2009, 0908.3163.
[11] M. Nussbaum. Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .
[12] L. Brown,et al. Asymptotic equivalence of nonparametric regression and white noise , 1996 .
[13] Andrew V. Carter. A continuous Gaussian approximation to a nonparametric regression in two dimensions , 2006 .
[14] Jean Jacod,et al. Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .
[15] Mark Podolskij,et al. Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .
[16] Lan Zhang. Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.
[17] Markus Reiss,et al. Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.
[18] Jean Jacod,et al. Diffusions with measurement errors. II. Optimal estimators , 2001 .
[19] Axel Munk,et al. Adaptive wavelet estimation of the diffusion coefficient under additive error measurements , 2010, 1007.4622.