Asymptotic equivalence for inference on the volatility from noisy observations

We consider discrete-time observations of a continuous martingale under measurement error. This serves as a fundamental model for high-frequency data in finance, where an efficient price process is observed under microstructure noise. It is shown that this nonparametric model is in Le Cam's sense asymptotically equivalent to a Gaussian shift experiment in terms of the square root of the volatility function σ and a nonstandard noise level. As an application, new rate-optimal estimators of the volatility function and simple efficient estimators of the integrated volatility are constructed.

[1]  Grace L. Yang,et al.  Asymptotics In Statistics , 1990 .

[2]  M. Nussbaum,et al.  Asymptotic equivalence for nonparametric regression , 2002 .

[3]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[4]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[5]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[6]  Axel Munk,et al.  Nonparametric Estimation of the Volatility Under Microstructure Noise: Wavelet Adaptation , 2010 .

[7]  Jean Jacod,et al.  Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .

[8]  I. Ibragimov,et al.  Asymptotically normal families of distributions and efficient estimation , 1991 .

[9]  P. Mykland A Gaussian calculus for inference from high frequency data , 2010, Annals of Finance.

[10]  Axel Munk,et al.  Nonparametric Estimation of the Volatility Function in a High-Frequency Model corrupted by Noise , 2009, 0908.3163.

[11]  M. Nussbaum Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .

[12]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[13]  Andrew V. Carter A continuous Gaussian approximation to a nonparametric regression in two dimensions , 2006 .

[14]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[15]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[16]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[17]  Markus Reiss,et al.  Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.

[18]  Jean Jacod,et al.  Diffusions with measurement errors. II. Optimal estimators , 2001 .

[19]  Axel Munk,et al.  Adaptive wavelet estimation of the diffusion coefficient under additive error measurements , 2010, 1007.4622.