Die Informationsübertragung im afferenten visuellen system

SummaryThe activity of single units of the optic tract, lateral geniculate body, optic radiations and striate cortex was recorded in cats (encephale isolé preparations) by means of microelectrodes. The optic nerves or radiations were stimulated with electrical shocks (0.3–1400 per sec). In other experiments binocular light stimuli were used.1.When 50–200 msec trains of stimuli were applied, the maximal impulse rate transmitted by optic nerve or radiation fibers was found to be between 350 and 1100 per sec. Above these values fiber discharges followed successive stimuli in 1∶2 or 1∶3 ratios. The transmission through a geniculate or cortical synapse reduced this maximal impulse rate to 30–50 percent of that of the fibers.2.Presynaptic stimulation frequencies above 100–400 per sec were observed to block impulse transmission through the synaptic stations about 10–120 msec after onset of electrical stimulation. Within a small range of stimulation frequency, just below that eliciting blocking, 1∶2, 1∶3 or 1∶4 transmission occured through cortical or geniculate synapses.3.The maximal impulse frequency transmitted through a neuronal chain decreased as the number of neurons in the chain increased.4.The information capacity of one afferent channel can be estimated to be 20–120 bit/sec. The information given by a neuronal impulse is not comparable to that of a binary digital unit pulse. Neuronal information can be understood as result of the operation of a system having a pulse frequency modulation code with considerable statistical fluctuation. These considerations do not take in account the added margin of information which is made possible by the spatial and temporal relationships of activity between different channels.5.The information capacity af the afferent visual system is limited by the frequency properties of synaptic transmission and not by those of afferent fibers.6.In single cortical units that could be activated by electrical stimulation of either optic nerve, the statistical conditions for “both” — or “either-or” — responses could be demonstrated using bilateral optic nerve stimuli separated by different intervals.7.With binocular light stimuli summation of excitatory and inhibitory processes were found at the level of cortical neurons.8.Some neurons in the visual cortex had the capacity of “measuring” the time difference between two light stimuli, one applied to the ipsilateral eye and the other to the contralateral one.9.The results are compared with the findings of Kuepfmuellee and Jenik regarding transmission and processing of information by an electronic model neuron.

[1]  L. Widen,et al.  Unitary analysis of the response elicited in the visual cortex cat , 1960 .

[2]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[3]  E. MacNichol,et al.  RETINAL MECHANISMS FOR CHROMATIC AND ACHROMATIC VISION , 1958, Annals of the New York Academy of Sciences.

[4]  P. W. Nye,et al.  An investigation of the mechanisms of eye movement control , 1961, Kybernetik.

[5]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[6]  N. RafaelLorenteDe,et al.  TRANSMISSION OF IMPULSES THROUGH CRANIAL MOTOR NUCLEI , 1939 .

[7]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[8]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[9]  E. Adrian,et al.  The impulses produced by sensory nerve‐endings , 1926 .

[10]  G. Gercken,et al.  Fermentative Bestimmung der freien D-Glucose im Kaninchenhirn unter normalen, ischämischen und anoxischen Bedingungen , 1958, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[11]  C. Li,et al.  Cortical intracellular potentials in response to stimulation to lateral geniculate body. , 1960, Journal of neurophysiology.

[12]  Kerner Zemanek, H.: Elementare Informationstheorie. Verlag R. Oldenbourg, Wien und München 1959, 120 Seiten, 28 Abbildungen, DM 14,20 , 1960 .

[13]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[14]  F. Schulte,et al.  Reflexerregung und Eigenhemmung tonischer und phasischer Alpha-Motoneurone während chemischer Dauererregung der Muskelspindeln , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[15]  G. Svaetichin,et al.  Spectral response curves from single cones. , 1956, Acta physiologica Scandinavica. Supplementum.

[16]  O. Grüsser,et al.  Rezeptorpotentiale einzelner retinaler Zapfen der Katze , 2004, Naturwissenschaften.

[17]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[18]  W. Evans,et al.  The refractory period of the sensory synapses of the lateral geniculate nucleus , 1956, The Journal of physiology.

[19]  O.-J. Grüsser Receptorabhängige R-Potentiale der Katzenretina , 1961 .

[20]  K. Naka,et al.  Recording of Retinal Action Potentials from Single Cells in the Insect Compound Eye , 1961, The Journal of general physiology.

[21]  H. T. Chang,et al.  Fiber groups in primary optic pathway of cat. , 1956, Journal of neurophysiology.

[22]  Günter Baumgartner,et al.  Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast , 1961 .

[23]  R. Galamboš,et al.  Microelectrode study of superior olivary nuclei. , 1959, The American journal of physiology.

[24]  O. Grüsser,et al.  Receptorabhängige Potentiale der Katzenretina und ihre Reaktionen auf Flimmerlicht , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[25]  E. Adrian,et al.  The physical background of perception , 1947 .

[26]  C. H. Graham,et al.  Nerve impulses from single receptors in the eye , 1932 .

[27]  W. Richter,et al.  A. Linder, Statistische Methoden für Naturwissenschaftler, Mediziner und Ingenieure. Dritte Auflage. 484 S. Basel und Stuttgart 1960. Birkhäuser Verlag. Preis geb. 58,60 DM , 1961 .

[28]  Günter Baumgartner,et al.  Kontrastlichteffekte an retinalen Ganglienzellen: Ableitungen vom Tractus opticus der Katze , 1961 .

[29]  M. Fuortes Initiation of impulses in visual cells of Limulus , 1959, The Journal of physiology.

[30]  S KITAMURA,et al.  Responses of a node of Ranvier to direct repetitive stimulation. , 1961, The Japanese journal of physiology.

[31]  M. Murakami,et al.  Further study on the origin of the so-called cone action potential (s-potential); its histological determination. , 1959, The Japanese journal of physiology.

[32]  W A RUSHTON,et al.  A theoretical treatment of Fuortes's observations upon eccentric cell activity in Limulus , 1959, The Journal of physiology.

[33]  O. Grüsser,et al.  Mikroelektrodenuntersuchungen zur Konvergenz vestibulärer und retinaler Afferenzen an einzelnen Neuronen des optischen Cortex der Katze , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[34]  O. Grüsser,et al.  Entladungsmuster der Neurone des visuellen Cortex bei monocularer und binocularer Belichtung , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[35]  D. Burkhardt,et al.  Die Eigenschaften und Funktionstypen der Sinnesorgane , 1960 .

[36]  M. Lennox,et al.  The on responses to colored flash in single optic tract fibers of cat: correlation with conduction velocity. , 1958, Journal of neurophysiology.

[37]  G. Svaetichin,et al.  The Retina as Model for the Functional Organization of the Nervous System , 1961 .

[38]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[39]  R. FitzHugh A STATISTICAL ANALYZER FOR OPTIC NERVE MESSAGES , 1958, The Journal of general physiology.

[40]  Walter A. Rosenblith,et al.  Theory of Hearing , 1950 .

[41]  E. Dodt,et al.  [Nerve conduction velocity in the retina]. , 1956, Experientia.

[42]  E. D. Adrian,et al.  The all-or-nothing reaction , 1933 .

[43]  Leon D. Harmon,et al.  Studies with artificial neurons, I: properties and functions of an artificial neuron , 1961, Kybernetik.

[44]  O. Grüsser,et al.  Neurophysiologische Grundlagen der periodischen Nachbildphasen nach kurzen Lichtblitzen , 2004, Albrecht von Graefes Archiv für Ophthalmologie.

[45]  U. Cornehls,et al.  Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischen Doppelreizen des Nervus opticus , 1958, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[46]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[47]  P. Bishop,et al.  The optic nerve. Properties of a central tract * , 1953, The Journal of physiology.

[48]  R. W. DITCHBURN,et al.  Vision with a Stabilized Retinal Image , 1952, Nature.

[49]  G WALD,et al.  The photoreceptor process in vision. , 1955, American journal of ophthalmology.

[50]  N. RafaelLorenteDe,et al.  LIMITS OF VARIATION OF THE SYNAPTIC DELAY OF MOTONEURONS , 1938 .

[51]  O.-J. Grüsser,et al.  Reaktionsmuster der Neurone im zentralen visuellen System von Fischen, Kaninchen und Katzen auf monoculare und binoculare Lichtreize , 1961 .

[52]  K. Motokawa,et al.  Origin of so-called cone action potential. , 1959, Journal of neurophysiology.

[53]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[54]  Selig Hecht Die physikalische Chemie und die Physiologie des Sehaktes , 1931 .

[55]  O. Creutzfeldt,et al.  [Microphysiology of cortical neurons & their role in sensory and cerebral function]. , 1957, Deutsche medizinische Wochenschrift.

[56]  M. Clare,et al.  Organization and distribution of fibers in the optic tract of the cat , 1955, The Journal of comparative neurology.

[57]  Richard Jung,et al.  Mikroableitungen von einzelnen Nervenzellen im optischen Cortex der Katze: Die lichtaktivierten B-Neurone , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[58]  W E le Gros Clark,et al.  The termination of optic fibres in the lateral geniculate body of the monkey. , 1941, Journal of anatomy.

[59]  H. Kapp,et al.  Reaktionen retinaler Neurone nach Lichtblitzen , 1958, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[60]  R H Chittenden,et al.  On the Primary Cleavage Products formed in the Digestion of Gluten‐casein of Wheat by Pepsin‐hydrochloric Acid , 1890, The Journal of physiology.

[61]  W. McCulloch,et al.  The limiting information capacity of a neuronal link , 1952 .

[62]  O. Grüsser,et al.  Ein elektronisch gesteuertes Doppellichtreizgerät , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[63]  O. Grüsser,et al.  Reaktionen einzelner Neurone des optischen Cortex der Katze nach elektrischen Reizserien des Nervus opticus , 1958, Archiv für Psychiatrie und Nervenkrankheiten.

[64]  H. Autrum,et al.  Die Belichtungspotentiale einzelner Sehzellen von Calliphora erythrocephala Meig , 1960 .

[65]  F. Jenik,et al.  Über die Nachrichtenverarbeitung in der Nervenzelle , 2004, Kybernetik.

[67]  O. Grusser,et al.  [Reactions of retinal neurons after light flashes. I. Single flashes and stimulation by flashes of changing frequency]. , 1958, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[68]  G. Baumgartner,et al.  [Reactions of individual neurons of the cat optical cortex after electrostimulation of the optic nerve]. , 1958, Archiv fur Psychiatrie und Nervenkrankheiten, vereinigt mit Zeitschrift fur die gesamte Neurologie und Psychiatrie.

[69]  John von Neumann,et al.  The Computer and the Brain , 1960 .

[70]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[71]  G. Svaetichin,et al.  Origin of the R-Potential in the Mammalian Retina , 1961 .

[72]  R. Granit Receptors and Sensory Perception , 1955 .

[73]  L. E. Lipetz,et al.  Response pathways to electric stimulation in the Limulus eye. , 1958, American journal of ophthalmology.

[74]  David P. C. Lloyd,et al.  MONOSYNAPTIC REFLEX RESPONSE OF INDIVIDUAL MOTONEURONS AS A FUNCTION OF FREQUENCY , 1957, The Journal of general physiology.

[75]  Richard Jung,et al.  Neurophysiologie und Psychophysik des Visuellen Systems = the visual system : neurophysiology and psychophysics , 1961 .

[76]  F. Duensing,et al.  Die Erregungskonstellationen im Rautenhirn des Kaninchens bei den Labyrinthstellreflexen (Magnus) , 2004, Naturwissenschaften.

[77]  L. Tauc,et al.  Processus post-synaptiques d'excitation et d'inhibition dans le soma neuronique de l'aplysie et de l'escargot , 1958 .

[78]  O. Grüsser,et al.  Mikroelektrodenuntersuchungen am Geniculatum laterale der Katze: Nervenzell- und Axonentladungen nach elektrischer Opticusreizung , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[79]  Richard Fatehchand,et al.  Glial Control of Neuronal Networks and Receptors , 1961 .

[80]  G. Baumgartner,et al.  11. Corticale Mechanismen des Kontrast- und Bewegungssehens. Receptive Felder Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast* Von , 1961 .

[81]  D. Sholl The organization of the cerebral cortex , 1957 .

[82]  Richard Jung,et al.  Korrelationen von Neuronentätigkeit und Sehen , 1961 .

[83]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[84]  M. KUWABARA,et al.  Response of a Single Retinula Cell to Polarized Light , 1959, Nature.

[85]  D H HUBEL,et al.  Cortical unit responses to visual stimuli in nonanesthetized cats. , 1958, American journal of ophthalmology.

[86]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[87]  Hans Drischel,et al.  Die Meßfunktion biologischer Rezeptoren als regeltheoretisches Problem , 2004, Naturwissenschaften.

[88]  T N WIESEL,et al.  Intraretinal recording with micropipette electrodes in the intact cat eye , 1959, The Journal of physiology.