Microstructure of Bentonite in Iron Ore Green Pellets

Abstract Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.

[1]  U. Olsson,et al.  Microstructural and Swelling Properties of Ca and Na Montmorillonite: (In Situ) Observations with Cryo-TEM and SAXS , 2012 .

[2]  B. Gault,et al.  High-resolution nanostructural investigation of Zn4Sb3 alloys , 2010 .

[3]  D. Joy,et al.  Use of sample bias voltage for low-energy high-resolution imaging in the SEM. , 2010 .

[4]  R. Wepf,et al.  3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water , 2010 .

[5]  Ki Woo Kim,et al.  Compositional contrast of uncoated fungal spores and stained section-face by low-loss backscattered electron imaging. , 2009, Micron.

[6]  G. Morris,et al.  Smectite suspension structural behaviour , 2009 .

[7]  G. V. Veen,et al.  Versatile Monochromator Module for XHR SEM , 2009, Microscopy and Microanalysis.

[8]  D. Joy,et al.  Challenges in Achieving High Resolution at Low Voltages in the SEM , 2009, Microscopy and Microanalysis.

[9]  R. Frost,et al.  Transmission X-ray microscopy (TXM) reveals the nanostructure of a smectite gel. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[10]  I. Gestmann,et al.  Extreme High-Resolution SEM: A Paradigm Shift , 2008, Microscopy Today.

[11]  S. Deville Freeze‐Casting of Porous Ceramics: A Review of Current Achievements and Issues , 2008, 1710.04201.

[12]  Bo Björkman,et al.  Binding mechanisms in wet iron ore green pellets with a bentonite binder , 2006 .

[13]  Roland Pusch,et al.  Microstructure of Smectite Clays and Engineering Performance , 2005 .

[14]  Dominique Guyonnet,et al.  Geosynthetic Clay Liner Interaction with Leachate: Correlation between Permeability, Microstructure, and Surface Chemistry , 2005 .

[15]  D. Preikszas,et al.  New Detection System for GEMINI , 2004, Microscopy and Microanalysis.

[16]  J. Addai-Mensah,et al.  Flocculation and dewatering behaviour of smectite dispersions: effect of polymer structure type , 2004 .

[17]  T. Jiang,et al.  Effects of binders on balling behaviors of iron ore concentrates , 2004 .

[18]  G. Lagaly,et al.  Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions , 2003 .

[19]  S. Kawatra,et al.  Effects of bentonite fiber formation in iron ore pelletization , 2002 .

[20]  S. Kawatra,et al.  Developing and understanding the bentonite fiber bonding mechanism , 2001 .

[21]  P. Luckham,et al.  The colloidal and rheological properties of bentonite suspensions , 1999 .

[22]  H. Jaksch,et al.  High-resolution, low-voltage SEM for true surface imaging and analysis , 1995, Analytical and bioanalytical chemistry.

[23]  D. Studer,et al.  Vitrification of articular cartilage by high‐pressure freezing , 1995, Journal of microscopy.

[24]  M. Müller,et al.  High‐pressure freezing of cell suspensions in cellulose capillary tubes , 1994, Journal of microscopy.

[25]  B. Gu,et al.  The Microstructure of Dilute Clay and Humic Acid Suspensions Revealed by Freeze-Fracture Electron Microscopy: A Reply , 1992 .

[26]  H. Murray Overview — clay mineral applications , 1991 .

[27]  K. Ryan,et al.  Cooling rate and ice‐crystal measurement in biological specimens plunged into liquid ethane, propane, and Freon 22 , 1990, Journal of microscopy.

[28]  Erich Plies,et al.  Compound magnetic and electrostatic lenses for low‐voltage applications , 1989 .

[29]  H. Vali,et al.  Ultrastructure and flow behavior of colloidal smectite dispersions , 1988 .

[30]  R. Keren,et al.  Settling and Flocculation Value of Sodium‐Montmorillonite Particles in Aqueous Media , 1988, Soil Science Society of America Journal.

[31]  R. Steinbrecht,et al.  Cryotechniques in Biological Electron Microscopy , 1987, Springer Berlin Heidelberg.

[32]  H. Moor Recent progress in the freeze-etching technique. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  G. J. Neale Transactions Joint Meeting Commission IV and V International Society of Soil Science , 1964 .

[34]  Armin Weiβ Neuere Untersuchungen über die Struktur thixotroper Gele , 1962 .

[35]  K. Norrish Low-Angle X-Ray Diffraction Studies of the Swelling of Montmorillonite and Vermiculite , 1961 .

[36]  I. Rosenqvist Closure of "Physico-Chemical Properties of Soils: Soil-Water Systems" , 1960 .

[37]  H. Olphen Forces Between Suspended Bentonite Particles , 1955 .

[38]  E. A. Hauser,et al.  Studies in Thixotropy. II. The Thixotropic Behavior Structure of Bentonite. , 1937 .

[39]  Seija Forsmo,et al.  Influence of green pellet properties on pelletizing of magnetite iron ore , 2007 .

[40]  J. Addai-Mensah,et al.  Improved dewatering behavior of clay minerals dispersions via interfacial chemistry and particle interactions optimization. , 2006, Journal of colloid and interface science.

[41]  A. L. Cavalieri,et al.  Influence of smectites on magnetite pellet strengths , 1996 .

[42]  G. Hyde,et al.  Advances in high-pressure and plunge-freeze fixation. , 1995, Methods in cell biology.

[43]  C. Chenu,et al.  Low Temperature Scanning Electron Microscopy of Clay and Organic Constituents and their Relevance to Soil Microstructures , 1995 .

[44]  I. Müllerová,et al.  Very low energy microscopy in commercial SEMs , 1993 .

[45]  D. Tessier,et al.  Relation between the macroscopic behavior of clays and their microstructural properties , 1992 .

[46]  D. Studer,et al.  High pressure freezing comes of age. , 1989, Scanning microscopy. Supplement.

[47]  H. Moor Theory and practice of high pressure freezing. , 1987 .

[48]  J. W. Goodwin,et al.  Investigation into the existence of edge—face coagulated structures in Na-montmorillonite suspensions , 1980 .

[49]  H. Olphen An Introduction to Clay Colloid Chemistry , 1977 .

[50]  R. Ottewill,et al.  Interparticle forces in montmorillonite gels , 1974 .

[51]  M. B. M'ewen,et al.  The gelation of montmorillonite. Part 1.—The formation of a structural framework in sols of Wyoming bentonite , 1957 .

[52]  K. Norrish,et al.  The swelling of montmorillonite , 1954 .

[53]  T. Lambe The Structure of Inorganic Soil , 1953 .

[54]  U. Hofmann,et al.  Über das Sedimentvolumen und die Quellung von Bentonit , 1945 .

[55]  C. Goodeve A general theory of thixotropy and viscosity , 1939 .

[56]  G. Broughton,et al.  The Gelation of Bentonite Suspensions. , 1935 .

[57]  H. Freundlich Ueber Thixotropie , 2022 .

[58]  K. Terzaghi Erdbaumechanik : auf bodenphysikalischer Grundlage , 1925 .