Quantitative determination of activation energies in mechanochemical reactions.

Mechanochemical reactions often result in 100% yields of single products, making purifying procedures obsolete. Mechanochemistry is also a sustainable and eco-friendly method. The ever increasing interest in this method is contrasted by a lack in mechanistic understanding of the mechanochemical reactivity and selectivity. Recent in situ investigations provided direct insight into formation pathways. However, the currently available theories do not predict temperature T as an influential factor. Here, we report the first determination of an apparent activation energy for a mechanochemical reaction. In a temperature-dependent in situ study the cocrystallisation of ibuprofen and nicotinamide was investigated as a model system. These experiments provide a pivotal step towards a comprehensive understanding of milling reaction mechanisms.

[1]  M. C. Etter,et al.  The use of cocrystallization as a method of studying hydrogen bond preferences of 2-aminopyrimidine , 1990 .

[2]  M. Caira,et al.  Selective formation of hydrogen bonded cocrystals between a sulfonamide and aromatic carboxylic acids in the solid state , 1995 .

[3]  L. Takacs Quicksilver from cinnabar: The first documented mechanochemical reaction? , 2000 .

[4]  F. Emmerling,et al.  Synthesis, structure determination, and formation of a theobromine : oxalic acid 2 : 1 cocrystal , 2015 .

[5]  T. Friščić,et al.  Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists. , 2015, The journal of physical chemistry letters.

[6]  F. Emmerling,et al.  Cadmium phenylphosphonates: preparation, characterisation and in situ investigation , 2016 .

[7]  Yingbo Zhao,et al.  Covalent Chemistry beyond Molecules. , 2016, Journal of the American Chemical Society.

[8]  S. Arrhenius Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .

[9]  Koichi Tanaka,et al.  Host–guest complex formation by a solid–solid reaction , 1987 .

[10]  L. Takács M. Carey Lea, the first mechanochemist , 2004 .

[11]  M. Senna,et al.  Hallmarks of mechanochemistry: from nanoparticles to technology. , 2013, Chemical Society reviews.

[12]  V. Boldyrev,et al.  Following the products of mechanochemical synthesis step by step , 2011 .

[13]  T. Friščić,et al.  Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. , 2010, Angewandte Chemie.

[14]  C. C. Seaton,et al.  Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients , 2008 .

[15]  G. Day,et al.  Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. , 2007, Nature Materials.

[16]  F. Delogu A few details of the austenite to martensite phase transformation in 304 stainless steel powders under mechanical processing , 2011 .

[17]  M. Eddleston,et al.  Polymorphs, hydrates and solvates of a co-crystal of caffeine with anthranilic acid. , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[18]  Andrew Wilkinson Compendium of Chemical Terminology , 1997 .

[19]  Christer B. Aakeröy,et al.  Building co-crystals with molecular sense and supramolecular sensibility , 2005 .

[20]  D. Voinovich,et al.  Cocrystal Formation through Mechanochemistry: from Neat and Liquid-Assisted Grinding to Polymer-Assisted Grinding. , 2015, Angewandte Chemie.

[21]  F. Emmerling,et al.  Mechanochemical synthesis and characterisation of cocrystals and metal organic compounds. , 2014, Faraday discussions.

[22]  A. Kwade,et al.  Process engineering with planetary ball mills. , 2013, Chemical Society reviews.

[23]  William Jones,et al.  Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding , 2009 .

[24]  Athanassios D. Katsenis,et al.  In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework , 2015, Nature Communications.

[25]  F. Emmerling,et al.  Evaluation of the formation pathways of cocrystal polymorphs in liquid-assisted syntheses , 2014 .

[26]  F. Emmerling,et al.  Fast and efficient synthesis of a host guest system: a mechanochemical approach , 2016 .

[27]  I. Paul,et al.  Solid-state formation of quinhydrones from their components: use of solid-solid reactions to prepare compounds not accessible from solution , 1984 .

[28]  Ana M. Belenguer,et al.  Direct observation of intermediates in a thermodynamically controlled solid-state dynamic covalent reaction. , 2014, Journal of the American Chemical Society.

[29]  Christoph Weder,et al.  Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials , 2016, Advanced materials.

[30]  T. Friščić,et al.  A stepwise mechanism for the mechanochemical synthesis of halogen-bonded cocrystal architectures. , 2008, Journal of the American Chemical Society.

[31]  William Jones,et al.  Solvent-drop grinding: green polymorph control of cocrystallisation. , 2004, Chemical communications.

[32]  R. Docherty,et al.  Creation of crystalline supramolecular arrays: a comparison of co-crystal formation from solution and by solid-state grinding , 1996 .

[33]  F. Delogu,et al.  Kinetics of amorphization processes by mechanical alloying: A modeling approach , 2007 .

[34]  F. Emmerling,et al.  Polymorphism of Mechanochemically Synthesized Cocrystals: A Case Study , 2016 .

[35]  S. Arrhenius Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte , 1889 .

[36]  W. Motherwell,et al.  Physical stability enhancement of theophylline via cocrystallization. , 2006, International journal of pharmaceutics.

[37]  F. L. Soares,et al.  Green Synthesis of Ibuprofen–Nicotinamide Cocrystals and In-Line Evaluation by Raman Spectroscopy , 2013 .

[38]  Naír Rodríguez-Hornedo,et al.  Solubility Advantage of Pharmaceutical Cocrystals , 2009 .

[39]  F. Delogu Kinetics of allotropic phase transformation in cobalt powders undergoing mechanical processing , 2008 .

[40]  T. Friščić,et al.  Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal , 2009 .

[41]  T. Friščić,et al.  High reactivity of metal-organic frameworks under grinding conditions: parallels with organic molecular materials. , 2010, Angewandte Chemie.

[42]  F. P. Bowden,et al.  Fast Reactions in Solids , 1958 .

[43]  O. Bolukbasi,et al.  An experimental and theoretical study of vibrational spectra of picolinamide, nicotinamide, and isonicotinamide , 2007 .

[44]  Keith Chadwick,et al.  How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine , 2007 .

[45]  Alicia H. Jubert,et al.  Vibrational and theoretical studies of non-steroidal anti-inflammatory drugs Ibuprofen [2-(4-isobutylphenyl)propionic acid]; Naproxen [6-methoxy-α-methyl-2-naphthalene acetic acid] and Tolmetin acids [1-methyl-5-(4-methylbenzoyl)-1H-pyrrole-2-acetic acid] , 2006 .

[46]  Ming-Wei Chen,et al.  Ultrasonic hammer produces hot spots in solids , 2015, Nature Communications.

[47]  Margaret C. Etter,et al.  Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas , 1990 .

[48]  Satoshi Murata,et al.  Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface. , 2016, Physical chemistry chemical physics : PCCP.

[49]  C. Strachan,et al.  Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding , 2011, Pharmaceutics.

[50]  Ana M. Belenguer,et al.  Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals. , 2013, Angewandte Chemie.

[51]  Ana M. Belenguer,et al.  In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction , 2013, Nature Protocols.

[52]  F. Emmerling,et al.  Direct in situ investigation of milling reactions using combined X-ray diffraction and Raman spectroscopy. , 2015, Angewandte Chemie.

[53]  G. Sun,et al.  Global pattern for the effect of climate and land cover on water yield , 2015, Nature Communications.

[54]  W. Jones,et al.  Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. , 2002, Chemical communications.

[55]  M. Eckert-Maksić,et al.  Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal-organic compounds. , 2010, Chemical communications.

[56]  Tomislav Friščić,et al.  Real-time and in situ monitoring of mechanochemical milling reactions. , 2013, Nature chemistry.

[57]  R. Tan,et al.  Co-crystals of caffeine and piracetam with 4-hydroxybenzoic acid: Unravelling the hidden hydrates of 1 : 1 co-crystals , 2012 .

[58]  S. Alshahateet Synthesis and Supramolecularity of Hydrogen-Bonded Cocrystals of Pharmaceutical Model Rac-Ibuprofen with Pyridine Derivatives , 2010 .

[59]  L. Takács,et al.  Self-sustaining reactions induced by ball milling , 2002 .

[60]  F. Delogu A mechanistic study of Ag50Cu50 solid solution formation by mechanical alloying , 2008 .

[61]  Hongzhen Li,et al.  A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method , 2015 .