Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space

Variational time discretization schemes are getting of increasing importance for the accurate numerical approximation of transient phenomena. The applicability and value of mixed finite element methods in space for simulating transport processes have been demonstrated in a wide class of works. We consider a family of continuous Galerkin–Petrov time discretization schemes that is combined with a mixed finite element approximation of the spatial variables. The existence and uniqueness of the semidiscrete approximation and of the fully discrete solution are established. For this, the Banach–Nečas–Babuška theorem is applied in a non-standard way. Error estimates with explicit rates of convergence are proved for the scalar and vector-valued variable. An optimal order estimate in space and time is proved by duality techniques for the scalar variable. The convergence rates are analyzed and illustrated by numerical experiments, also on stochastically perturbed meshes.

[1]  Markus Bause,et al.  Variational time discretization for mixed finite element approximations of nonstationary diffusion problems , 2015, J. Comput. Appl. Math..

[2]  Peter Knabner,et al.  Error estimates for a mixed finite element discretization of some degenerate parabolic equations , 2008, Numerische Mathematik.

[3]  Sabine Attinger,et al.  Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: A comparative study , 2011 .

[4]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[5]  Miloslav Feistauer,et al.  Theory of the Space-Time Discontinuous Galerkin Method for Nonstationary Parabolic Problems with Nonlinear Convection and Diffusion , 2012, SIAM J. Numer. Anal..

[6]  Rolf Rannacher,et al.  Adaptive Galerkin Finite Element Methods for the Wave Equation , 2010, Comput. Methods Appl. Math..

[7]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[8]  Stefan Turek,et al.  Higher Order Galerkin Time Discretization for Nonstationary Incompressible Flow , 2013 .

[9]  G. Matthies,et al.  Numerical studies of variational-type time-discretization techniques for transient Oseen problem , 2015 .

[10]  V. Thomée,et al.  Error estimates for some mixed finite element methods for parabolic type problems , 1981 .

[11]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[12]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[13]  Yuanle Ma,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[14]  Markus Bause,et al.  Variational Space–Time Methods for the Wave Equation , 2014, J. Sci. Comput..

[15]  Roman Andreev,et al.  Space-time discretization of the heat equation , 2012, Numerical Algorithms.

[16]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[17]  Stefan Turek,et al.  A Note on Accurate and Efficient Higher Order Galerkin Time Stepping Schemes for the Nonstationary Stokes Equations , 2012 .

[18]  Charalambos Makridakis,et al.  Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations , 2004, Math. Comput..

[19]  AndreevRoman Space-time discretization of the heat equation , 2014 .

[20]  Béatrice Rivière,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[21]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[22]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[23]  M. Bause Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity , 2008 .

[24]  Peter Kuster Finite Element Methods And Their Applications , 2016 .

[25]  Peter Knabner,et al.  Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media , 2012 .

[26]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[27]  Peter Knabner,et al.  Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards' Equation , 2004, SIAM J. Numer. Anal..

[28]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[29]  Joachim Hoffmann,et al.  First-order convergence of multi-point flux approximation on triangular grids and comparison with mixed finite element methods , 2010, Numerische Mathematik.

[30]  Uwe Köcher,et al.  Variational Space-Time Methods for the Elastic Wave Equation and the Diffusion Equation , 2015 .

[31]  Alexandre Ern,et al.  Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs , 2016, Math. Comput..

[32]  Steffen Basting,et al.  Efficient preconditioning of variational time discretization methods for parabolic Partial Differential Equations , 2015 .

[33]  P. Knabner,et al.  Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods , 2004 .

[34]  Volker John,et al.  Adaptive time step control for higher order variational time discretizations applied to convection–diffusion–reaction equations , 2015 .

[35]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[36]  Carol S. Woodward,et al.  Analysis of Expanded Mixed Finite Element Methods for a Nonlinear Parabolic Equation Modeling Flow into Variably Saturated Porous Media , 2000, SIAM J. Numer. Anal..

[37]  Friedhelm Schieweck,et al.  A-stable discontinuous Galerkin–Petrov time discretization of higher order , 2010, J. Num. Math..

[38]  G. Matthies,et al.  Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations , 2012 .

[39]  J. V. D. Vegt,et al.  Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains , 2006 .

[40]  Christopher E. Kees,et al.  Mixed finite element methods and higher-order temporal approximations , 2002 .

[41]  M. Celia,et al.  A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation , 1990 .

[42]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[43]  Peter Knabner,et al.  An Improved Optimal Order Mixed Finite Element Method for Semilinear Transport Problems , 2013 .

[44]  Stefan Turek,et al.  Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation , 2011, J. Num. Math..

[45]  Sabine Attinger,et al.  Analysis of an Euler implicit‐mixed finite element scheme for reactive solute transport in porous media , 2009 .

[46]  M. Cristina,et al.  Superconvergence of mixed finite element methods for parabolic equations , 1987 .

[47]  Peter Monk,et al.  Continuous finite elements in space and time for the heat equation , 1989 .

[48]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .