Next generation sequencing in cancer research and clinical application

The wide application of next-generation sequencing (NGS), mainly through whole genome, exome and transcriptome sequencing, provides a high-resolution and global view of the cancer genome. Coupled with powerful bioinformatics tools, NGS promises to revolutionize cancer research, diagnosis and therapy. In this paper, we review the recent advances in NGS-based cancer genomic research as well as clinical application, summarize the current integrative oncogenomic projects, resources and computational algorithms, and discuss the challenge and future directions in the research and clinical application of cancer genomic sequencing.

[1]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[2]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[3]  J. Hicks,et al.  Insight into the heterogeneity of breast cancer through next-generation sequencing. , 2011, The Journal of clinical investigation.

[4]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[5]  Ken Chen,et al.  VarScan: variant detection in massively parallel sequencing of individual and pooled samples , 2009, Bioinform..

[6]  E. Wang,et al.  Analysis and design of RNA sequencing experiments for identifying isoform regulation , 2010, Nature Methods.

[7]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[8]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[9]  Christine A Iacobuzio-Donahue,et al.  A new branch on the tree: next-generation sequencing in the study of cancer evolution. , 2012, Seminars in cell & developmental biology.

[10]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[11]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[12]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[13]  Emmanuel Barillot,et al.  SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data , 2010, Bioinform..

[14]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[15]  David Haussler,et al.  Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM , 2010, Bioinform..

[16]  R. Wilson,et al.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation , 2009, Nature Methods.

[17]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[18]  Ken Chen,et al.  SomaticSniper: identification of somatic point mutations in whole genome sequencing data , 2012, Bioinform..

[19]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[20]  T. Hudson,et al.  Unraveling the genetics of cancer: genome sequencing and beyond. , 2011, Annual review of genomics and human genetics.

[21]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[22]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[23]  Reading cancer's blueprint , 2012, Nature Biotechnology.

[24]  C Lengauer,et al.  Genetic instability and darwinian selection in tumours. , 1999, Trends in cell biology.

[25]  B. Langmead,et al.  Cloud-scale RNA-sequencing differential expression analysis with Myrna , 2010, Genome Biology.

[26]  B. Wold,et al.  Sequence census methods for functional genomics , 2008, Nature Methods.

[27]  Faraz Hach,et al.  Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery , 2010, Bioinform..

[28]  Sohrab P. Shah,et al.  JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data , 2012, Bioinform..

[29]  M. Tzaphlidou,et al.  Next-generation sequencing-based testing for cancer mutational landscape diversity: clinical implications? , 2012, Expert review of molecular diagnostics.

[30]  Steven J. M. Jones,et al.  BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data , 2012, Bioinform..

[31]  J. Shendure,et al.  Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data , 2011, Nature Reviews Genetics.

[32]  Aleix Prat Aparicio Comprehensive molecular portraits of human breast tumours , 2012 .

[33]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[34]  Melanie A. Huntley,et al.  Recurrent R-spondin fusions in colon cancer , 2012, Nature.

[35]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[36]  Irmtraud M. Meyer,et al.  The clonal and mutational evolution spectrum of primary triple-negative breast cancers , 2012, Nature.

[37]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[38]  T. Fennell,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[39]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[40]  B. Taylor,et al.  Clinical cancer genomics: how soon is now? , 2011, The Journal of pathology.

[41]  Ken Chen,et al.  Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. , 2011, JAMA.

[42]  Nuria Lopez-Bigas,et al.  IntOGen: integration and data mining of multidimensional oncogenomic data , 2010, Nature Methods.

[43]  Hidenori Ojima,et al.  High-resolution characterization of a hepatocellular carcinoma genome , 2011, Nature Genetics.

[44]  Tak-Wah Lam,et al.  Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions , 2011, Scientific reports.

[45]  Derek Y. Chiang,et al.  MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery , 2010, Nucleic acids research.

[46]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[47]  Michael Baudis,et al.  Progenetix.net: an online repository for molecular cytogenetic aberration data , 2001, Bioinform..

[48]  M. Gerstein,et al.  PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data , 2009, Genome Biology.

[49]  Federación de Sociedades Españolas de Oncología Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. , 2005 .

[50]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[51]  Kevin P. Murphy,et al.  SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors , 2010, Bioinform..

[52]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[53]  Steven J. M. Jones,et al.  Alternative expression analysis by RNA sequencing , 2010, Nature Methods.

[54]  J. Mullikin,et al.  SSAHA: a fast search method for large DNA databases. , 2001, Genome research.

[55]  Michael Brudno,et al.  SHRiMP: Accurate Mapping of Short Color-space Reads , 2009, PLoS Comput. Biol..

[56]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[57]  A N Desai,et al.  Next‐generation sequencing: ready for the clinics? , 2012, Clinical genetics.

[58]  V. Almendro,et al.  Heterogeneity of breast cancer: etiology and clinical relevance , 2011, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico.

[59]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[60]  Darrell Desveaux,et al.  Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2 , 2012, BMC Genomics.

[61]  Jian Ma,et al.  FusionHunter: identifying fusion transcripts in cancer using paired-end RNA-seq , 2011, Bioinform..

[62]  Y. Xing,et al.  Detection of splice junctions from paired-end RNA-seq data by SpliceMap , 2010, Nucleic acids research.

[63]  Hugo Y. K. Lam,et al.  Detecting and annotating genetic variations using the HugeSeq pipeline , 2012, Nature Biotechnology.

[64]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[65]  C. Sander,et al.  Mutual exclusivity analysis identifies oncogenic network modules. , 2012, Genome research.

[66]  C. Swanton Intratumor heterogeneity: evolution through space and time. , 2012, Cancer research.

[67]  S. Salzberg,et al.  Repetitive DNA and next-generation sequencing: computational challenges and solutions , 2011, Nature Reviews Genetics.

[68]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[69]  Hannah Carter,et al.  CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer , 2011, Bioinform..

[70]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[71]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[72]  S. Nelson,et al.  BFAST: An Alignment Tool for Large Scale Genome Resequencing , 2009, PloS one.

[73]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[74]  J. Long,et al.  Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data , 2012, BMC Genomics.

[75]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[76]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[77]  M. Mazumdar,et al.  Intra- and Inter-Tumor Heterogeneity of BRAFV600EMutations in Primary and Metastatic Melanoma , 2012, PloS one.

[78]  Yu Shyr,et al.  Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. , 2012, The New England journal of medicine.

[79]  Joshua F. McMichael,et al.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing , 2011, Nature.

[80]  Huanming Yang,et al.  SNP detection for massively parallel whole-genome resequencing. , 2009, Genome research.

[81]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[82]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[83]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[84]  S. Redaelli,et al.  FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery , 2012, Nucleic acids research.

[85]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[86]  R. Gibbs,et al.  Exome Sequencing of Head and Neck Squamous Cell Carcinoma Reveals Inactivating Mutations in NOTCH1 , 2011, Science.

[87]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[88]  C. Sander,et al.  Automated Network Analysis Identifies Core Pathways in Glioblastoma , 2010, PloS one.

[89]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[90]  James Taylor,et al.  Next-generation sequencing data interpretation: enhancing reproducibility and accessibility , 2012, Nature Reviews Genetics.

[91]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[92]  Joshua F. McMichael,et al.  Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition , 2012, Nature.

[93]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[94]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.