An Hydrophilic Anode Interlayer for Solution Processed Organohalide Perovskite Solar Cells

Partially converted poly(1,4-phenylenevinylene) (PPV) is used as a thin p-type interlayer in planar organohalide pervoskite solar cells resulting in a high V, 1.06 V, a power conversion efficiency of ≈15%, and minimized charge carrier recombination.

[1]  Q. Gong,et al.  Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer , 2015 .

[2]  Xueyan Wang,et al.  Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells , 2015 .

[3]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[4]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[5]  Yanjun Fang,et al.  Resolving Weak Light of Sub‐picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction , 2015, Advanced materials.

[6]  Paul L. Burn,et al.  Photocarrier drift distance in organic solar cells and photodetectors , 2015, Scientific Reports.

[7]  H. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, Nature Physics.

[8]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[9]  Paul Meredith,et al.  Low Noise, IR‐Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging , 2015, Advanced materials.

[10]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[11]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[12]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[13]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[14]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[15]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[16]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[17]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[18]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[19]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[20]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[21]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[22]  Jianbo Gao,et al.  n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. , 2011, Nano letters.

[23]  Fei Huang,et al.  Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. , 2010, Chemical Society reviews.

[24]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[25]  W. Jaegermann,et al.  Interface Engineering of Inorganic Thin‐Film Solar Cells – Materials‐Science Challenges for Advanced Physical Concepts , 2009 .

[26]  Martijn Kemerink,et al.  Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol , 2008 .

[27]  P. Dutta,et al.  Anode Interfacial Engineering Approaches to Enhancing Anode/Hole Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes , 2002 .

[28]  G. R. Webster,et al.  Neutron reflection study on soluble and insoluble poly[2-(2’-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene) films , 2002 .

[29]  Franco Cacialli,et al.  Molecular-scale interface engineering for polymer light-emitting diodes , 2000, Nature.

[30]  Alan W. Grice,et al.  Insoluble Poly [2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene] for Use in Multilayer Light‐Emitting Diodes , 1997 .

[31]  Donal D. C. Bradley,et al.  Poly(p-phenylenevinylene) light-emitting diodes : enhanced electroluminescent efficiency through charge carrier confinement , 1992 .

[32]  Donal D. C. Bradley,et al.  Synthesis of a segmented conjugated polymer chain giving a blue-shifted electroluminescence and improved efficiency , 1992 .

[33]  Donal D. C. Bradley,et al.  Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly[(2,5-dimethyl-p-phenylene)vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene] , 1992 .