Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells.

Organic-inorganic hybrid perovskite solar cells (PSCs) have drawn worldwide intense research in recent years. Herein, we have first applied another p-type inorganic hole-selective contact material, CuS nanoparticles (CuS NPs), in an inverted planar heterojunction (PHJ) perovskite solar cell. The CuS NP-modification of indium tin oxide (ITO) has successfully tuned the surface work function from 4.9 to 5.1 eV but not affect the surface roughness and transmittance, which can effectively reduce the interfacial carrier injection barrier and facilitate high hole extraction efficiency between the perovskite and ITO layers. After optimization, the maximum power conversion efficiency (PCE) has been over 16% with low J-V hysteresis and excellent stability. Therefore, the low-cost solution-processed and stable CuS NPs would be an alternative interfacial modification material for industrial production in perovskite solar cells.

[1]  Bo Qu,et al.  A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. , 2014, Chemical communications.

[2]  Laura M Herz,et al.  Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx. , 2014, The journal of physical chemistry letters.

[3]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[4]  Dong Liang,et al.  A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. , 2010, Journal of the American Chemical Society.

[5]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[6]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[7]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[8]  Suren A. Gevorgyan,et al.  Degradation patterns in water and oxygen of an inverted polymer solar cell. , 2010, Journal of the American Chemical Society.

[9]  Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells. , 2014, Journal of colloid and interface science.

[10]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[11]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[12]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[13]  Jae Woong Jung,et al.  A Low‐Temperature, Solution‐Processable, Cu‐Doped Nickel Oxide Hole‐Transporting Layer via the Combustion Method for High‐Performance Thin‐Film Perovskite Solar Cells , 2015, Advanced materials.

[14]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[15]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[16]  A. Galdikas,et al.  Room-temperature-functioning ammonia sensor based on solid-state CuxS films , 2000 .

[17]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[18]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[19]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[20]  G. Stucky,et al.  Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes. , 2003, Journal of the American Chemical Society.

[21]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[22]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[23]  Yunlong Li,et al.  Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer , 2015, Nano Research.

[24]  David Cahen,et al.  Photovoltaics: Perovskite cells roll forward , 2014 .

[25]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[26]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[27]  T. Wen,et al.  Perovskite / Fullerene Planar-Heterojunction Hybrid Solar Cells , 2013 .

[28]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[29]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[30]  Liming Ding,et al.  Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. , 2015, Small.

[31]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[32]  T. Hasegawa,et al.  Nanometer-scale switches using copper sulfide , 2003 .

[33]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[34]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[35]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[36]  Dae Ho Song,et al.  Solar Cells: Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate (Adv. Mater. 22/2015) , 2015 .

[37]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[38]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[39]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[40]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.