Regular odd rings and non-planar graphs

In a previous paper we have announced that a graph is non-planar if and only if it contains a maximal, strict, compact, odd ring. Little has conjectured that the compactness condition may be removed. Chernyak has now published a proof of this conjecture. However, it is difficult to test a ring for maximality. In this paper we show that for odd rings of size five or greater, the condition of maximality may be replaced by a new one called regularity. Regularity is an easier condition to diagnose than is maximality.