Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial

We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

[1]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[2]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[3]  M. Wegener,et al.  Strong optical activity from twisted-cross photonic metamaterials. , 2009, Optics letters.

[4]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[5]  K. A. Bachman,et al.  Spiral plasmonic nanoantennas as circular polarization transmission filters. , 2012, Optics express.

[6]  Nikolay I. Zheludev,et al.  Giant optical gyrotropy due to electromagnetic coupling , 2007 .

[7]  Andreas Tünnermann,et al.  Circular Dichroism from Chiral Nanomaterial Fabricated by On‐Edge Lithography , 2012, Advanced materials.

[8]  Jari Turunen,et al.  Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles , 1994 .

[9]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[10]  M. Wegener,et al.  Circular dichroism of planar chiral magnetic metamaterials. , 2007, Optics letters.

[11]  E. Kley,et al.  A dedicated multilayer technique for the fabrication of three-dimensional metallic nanoparticles , 2012 .

[12]  Carsten Rockstuhl,et al.  Retrieving effective parameters for quasiplanar chiral metamaterials , 2008 .

[13]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[14]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[15]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[16]  Harald Giessen,et al.  Tailoring enhanced optical chirality : design principles for chiral plasmonic nanostructures , 2012 .

[17]  S. N. Volkov,et al.  Optical activity in diffraction from a planar array of achiral nanoparticles , 2009 .

[18]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[19]  Optical activity in chiral media composed of three-dimensional metallic meta-atoms , 2009 .

[20]  W. Tam,et al.  Circular dichroism in double-layer metallic crossed-gratings , 2011 .

[21]  Harald Giessen,et al.  Large-area 3D chiral plasmonic structures. , 2013, ACS nano.

[22]  V V Moshchalkov,et al.  Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. , 2009, Nano letters.

[23]  M. Hentschel,et al.  Three-dimensional chiral plasmonic oligomers , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[24]  V V Moshchalkov,et al.  The role of chiral local field enhancements below the resolution limit of Second Harmonic Generation microscopy. , 2012, Optics express.

[25]  Ekmel Ozbay,et al.  Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission , 2013 .

[26]  G. Cross,et al.  The production of nanostructures by mechanical forming , 2006 .

[27]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[28]  Xiang Lu,et al.  Construction of a chiral metamaterial with a U-shaped resonator assembly , 2010 .

[29]  Carsten Rockstuhl,et al.  Advanced Jones calculus for the classification of periodic metamaterials , 2010, 1008.4117.

[30]  H. Misawa,et al.  Plasmonic antenna effects on photochemical reactions. , 2011, Accounts of chemical research.

[31]  Lee Billings,et al.  Exotic optics: Metamaterial world , 2013, Nature.

[32]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[33]  Holger Schmidt,et al.  Enhanced e-beam pattern writing for nano-optics based on character projection , 2012, European Mask and Lithography Conference.