Spatiotemporal cGMP dynamics in living mouse rods.

[1]  A. Dizhoor,et al.  Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors. , 2011, Biochemistry.

[2]  Jeannie Chen,et al.  Role of Guanylyl Cyclase Modulation in Mouse Cone Phototransduction , 2011, The Journal of Neuroscience.

[3]  P. Bisegna,et al.  Identification of key factors that reduce the variability of the single photon response , 2011, Proceedings of the National Academy of Sciences.

[4]  G. Field,et al.  Optimal processing of photoreceptor signals is required to maximize behavioural sensitivity , 2010, The Journal of physiology.

[5]  E. Pugh,et al.  Lessons from photoreceptors: turning off g-protein signaling in living cells. , 2010, Physiology.

[6]  Marie E Burns,et al.  Control of Rhodopsin's Active Lifetime by Arrestin-1 Expression in Mammalian Rods , 2010, The Journal of Neuroscience.

[7]  Gordon L Fain,et al.  Background Light Produces a Recoverin-Dependent Modulation of Activated-Rhodopsin Lifetime in Mouse Rods , 2010, The Journal of Neuroscience.

[8]  Marie E Burns,et al.  RGS9 concentration matters in rod phototransduction. , 2009, Biophysical journal.

[9]  Guowei Zhang,et al.  Activation-dependent Hindrance of Photoreceptor G Protein Diffusion by Lipid Microdomains* , 2008, Journal of Biological Chemistry.

[10]  A. Dizhoor,et al.  A Role for GCAP2 in Regulating the Photoresponse , 2008, Journal of Biological Chemistry.

[11]  K. Palczewski,et al.  Ca2+‐dependent Regulation of Phototransduction † , 2008, Photochemistry and photobiology.

[12]  Daniele Andreucci,et al.  Diffusion of the second messengers in the cytoplasm acts as a variability suppressor of the single photon response in vertebrate phototransduction. , 2008, Biophysical journal.

[13]  Y. Koutalos,et al.  Longitudinal Diffusion of a Polar Tracer in the Outer Segments of Rod Photoreceptors from Different Species† , 2006, Photochemistry and photobiology.

[14]  Theodore G. Wensel,et al.  RGS Expression Rate-Limits Recovery of Rod Photoresponses , 2006, Neuron.

[15]  P. Detwiler,et al.  Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses. , 2006 .

[16]  Anirvan M. Sengupta,et al.  G-protein-coupled enzyme cascades have intrinsic properties that improve signal localization and fidelity. , 2005, Biophysical journal.

[17]  D. Baylor,et al.  Recoverin Regulates Light-dependent Phosphodiesterase Activity in Retinal Rods , 2004, The Journal of general physiology.

[18]  D. Holcman,et al.  Longitudinal diffusion in retinal rod and cone outer segment cytoplasm: the consequence of cell structure. , 2004, Biophysical journal.

[19]  Marie E. Burns,et al.  Dynamics of Cyclic GMP Synthesis in Retinal Rods , 2002, Neuron.

[20]  F. Rieke,et al.  Mechanisms Regulating Variability of the Single Photon Responses of Mammalian Rod Photoreceptors , 2002, Neuron.

[21]  D. Baylor,et al.  Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Hofmann,et al.  Maximal Rate and Nucleotide Dependence of Rhodopsin-catalyzed Transducin Activation , 2001, The Journal of Biological Chemistry.

[23]  T. Lamb,et al.  The Gain of Rod Phototransduction Reconciliation of Biochemical and Electrophysiological Measurements , 2000, Neuron.

[24]  P. Detwiler,et al.  Longitudinal spread of second messenger signals in isolated rod outer segments of lizards , 1999, The Journal of physiology.

[25]  J B Hurley,et al.  Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. I. Korenbrot,et al.  In Intact Cone Photoreceptors, a Ca2+-dependent, Diffusible Factor Modulates the cGMP-gated Ion Channels Differently than in Rods , 1998, The Journal of general physiology.

[27]  D. Baylor,et al.  Origin of reproducibility in the responses of retinal rods to single photons. , 1998, Biophysical journal.

[28]  N. Engheta,et al.  Kinetics of Recovery of the Dark-adapted Salamander Rod Photoresponse , 1998, The Journal of general physiology.

[29]  K. Palczewski,et al.  Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase-activating protein 1. , 1997, Biochemistry.

[30]  Y. Koutalos,et al.  Diffusion coefficient of the cyclic GMP analog 8-(fluoresceinyl)thioguanosine 3',5' cyclic monophosphate in the salamander rod outer segment. , 1995, Biophysical journal.

[31]  David J. Baylor,et al.  Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant , 1995, Science.

[32]  E. Pugh,et al.  Diffusion coefficient of cyclic GMP in salamander rod outer segments estimated with two fluorescent probes. , 1993, Biophysical journal.

[33]  T. Lamb,et al.  Amplification and kinetics of the activation steps in phototransduction. , 1993, Biochimica et biophysica acta.

[34]  P. Mcnaughton,et al.  Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. , 1992, The Journal of physiology.

[35]  T. Lamb,et al.  G-protein cascades: gain and kinetics , 1992, Trends in Neurosciences.

[36]  E N Pugh,et al.  A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. , 1992, The Journal of physiology.

[37]  J. Jin,et al.  Light-dependent delay in the falling phase of the retinal rod photoresponse , 1992, Visual Neuroscience.

[38]  P. Schnetkamp,et al.  Regulation of intracellular free Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. II. Thermodynamic competence of transmembrane Na+ and K+ gradients and inactivation of Na(+)-dependent Ca2+ extrusion. , 1991, The Journal of biological chemistry.

[39]  A. Hodgkin,et al.  Control of light‐sensitive current in salamander rods. , 1988, The Journal of physiology.

[40]  K. Yau,et al.  Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane , 1986, Nature.

[41]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[42]  P. Mcnaughton,et al.  Spatial spread of activation and background desensitization in toad rod outer segments , 1981, The Journal of physiology.

[43]  A. Cohen The ultrastructure of the rods of the mouse retina. , 1960, The American journal of anatomy.

[44]  D. Finkel,et al.  Direct optimization algorithm user guide , 2003 .

[45]  Y. Koutalos,et al.  Cyclic GMP diffusion coefficient in rod photoreceptor outer segments. , 1995, Biophysical journal.