Rank invariant tests for interval censored data under the grouped continuous model.

This paper creates rank invariant score tests for grouped or interval censored data. This generalizes Finkelstein (1986, Biometrics 42, 845-854), who derived score tests for interval censored data assuming proportional hazards. We frame the problem as a linear rank test of a shift in location with a known error distribution. We discuss adjustments to the test that may be required when the number of observation times is large. We offer a graphical test of the assumption of the location shift model and discuss an alternative interpretation of the test using the logistic error when the location shift assumption does not hold.

[1]  D. Rubin,et al.  Ignorability and Coarse Data , 1991 .

[2]  D. Finkelstein,et al.  A proportional hazards model for interval-censored failure time data. , 1986, Biometrics.

[3]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[4]  R. Peto,et al.  Asymptotically efficient rank invariant test procedure (with discussion). , 1972 .

[5]  John D. Kalbfleisch,et al.  Likelihood Methods and Nonparametric Tests , 1978 .

[6]  R. Prentice,et al.  Regression analysis of grouped survival data with application to breast cancer data. , 1978, Biometrics.

[7]  S W Lagakos,et al.  Analyzing doubly censored data with covariates, with application to AIDS. , 1993, Biometrics.

[8]  P. Sen,et al.  Nonparametric Methods in General Linear Models. , 1986 .

[9]  D. Heitjan Ignorability and coarse data: some biomedical examples. , 1993, Biometrics.

[10]  P. Sen Asymptotically most powerful rank order tests for grouped data , 1967 .

[11]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[12]  S. Bennett,et al.  Analysis of survival data by the proportional odds model. , 1983, Statistics in medicine.

[13]  R. Prentice Linear rank tests with right censored data , 1978 .

[14]  Tied, grouped continuous and ordered categorical data: A comparison of two models , 1984 .

[15]  C. Geyer,et al.  Maximum likelihood for interval censored data: Consistency and computation , 1994 .

[16]  D. Schoenfeld,et al.  A proportional hazards model for truncated AIDS data. , 1993, Biometrics.

[17]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[18]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[19]  P. Sen,et al.  Theory of rank tests , 1969 .

[20]  S G Self,et al.  Linear rank tests for interval-censored data with application to PCB levels in adipose tissue of transformer repair workers. , 1986, Biometrics.

[21]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[22]  R. Wolfe,et al.  A semiparametric model for regression analysis of interval-censored failure time data. , 1985, Biometrics.

[23]  Anastasios A. Tsiatis,et al.  Regression with interval-censored data , 1995 .