A Newton-Galerkin Method for Fluid Flow Exhibiting Uncertain Periodic Dynamics

The determination of limit-cycles plays an important role in characterizing complex dynamical systems, such as unsteady fluid flows. In practice, dynamical systems are described by models equations involving parameters which are seldom exactly known, leading to parametric uncertainties. These parameters can be suitably modeled as random variables, so if the system possesses almost surely a stable time periodic solution, limit-cycles become stochastic, too. This paper introduces a novel numerical method for the computation of stable stochastic limit-cycles based on the spectral stochastic finite element method with polynomial chaos (PC) expansions. The method is designed to overcome the limitation of PC expansions related to convergence breakdown for long term integration. First, a stochastic time scaling of the model equations is determined to control the phase-drift of the stochastic trajectories and allowing for accurate low order PC expansions. Second, using the rescaled governing equations, we aim at ...

[1]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[2]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[5]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[6]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[7]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[8]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[9]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[10]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[11]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[12]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[13]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[14]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[15]  Y. Duguet,et al.  Relative periodic orbits in transitional pipe flow , 2008, 0807.2580.

[16]  Eberhard Zeidler,et al.  Applied Functional Analysis: Applications to Mathematical Physics , 1995 .

[17]  Habib N. Najm,et al.  Natural Convection in a Closed Cavity under Stochastic Non-Boussinesq Conditions , 2005, SIAM J. Sci. Comput..

[18]  Vincent Heuveline,et al.  A local time--dependent Generalized Polynomial Chaos method for Stochastic Dynamical Systems , 2011 .

[19]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[20]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[21]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[22]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[23]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[24]  Peter V Coveney,et al.  New variational principles for locating periodic orbits of differential equations , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  O. L. Maître,et al.  Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics , 2010 .

[26]  Werner Augustin,et al.  HiFlow3: A Hardware-Aware Parallel Finite Element Package , 2011, Parallel Tools Workshop.

[27]  Chris L. Pettit,et al.  Uncertainty quantification of limit-cycle oscillations , 2006, J. Comput. Phys..

[28]  N. Wiener The Homogeneous Chaos , 1938 .

[29]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[30]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[31]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[32]  Catherine Elizabeth Powell,et al.  Preconditioning Steady-State Navier-Stokes Equations with Random Data , 2012, SIAM J. Sci. Comput..

[33]  Michael Schick,et al.  Parareal Time-Stepping for Limit-Cycle Computation of the Incompressible Navier-Stokes Equations with Uncertain Periodic Dynamics , 2015 .

[34]  Catherine Elizabeth Powell,et al.  Preconditioning Stochastic Galerkin Saddle Point Systems , 2010, SIAM J. Matrix Anal. Appl..

[35]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..