On the CRAY-System Random Number Generator

We present a theoretical and empirical analysis of the quality of the CRAY-system random num ber generator RANF in parallel settings. Sub sequences of this generator are used to obtain parallel streams of random numbers for each pro cessor. We use the spectral test to analyze the quality of lagged subsequences of RANF with step sizes 21, l ≥ 1, appropriate for CRAY sys tems. Our results demonstrate that with increas ing l, the quality of lagged subsequences is strongly reduced in comparison to the original sequence. The results are supported by a numeri cal Monte Carlo integration study. We also use the spectral test to exhibit the well known long- range correlations between consecutive blocks of random numbers obtained from RANF.

[1]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[2]  Ora E. Percus,et al.  Random Number Generators for MIMD Parallel Processors , 1989, J. Parallel Distributed Comput..

[3]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[4]  M. J. Durst Using linear congruential generators for parallel random number generation , 1989, WSC '89.

[5]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[6]  A. De Matteis,et al.  Critical distances in pseudorandom sequences generated with composite moduli , 1992, Int. J. Comput. Math..

[7]  Pierre L'Ecuyer,et al.  A random number generator based on the combination of four LCGs , 1997 .

[8]  I. Vattulainen,et al.  A comparative study of some pseudorandom number generators , 1995 .

[9]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[10]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[11]  Karl Entacher,et al.  A Collection of Selected Pseudorandom Number Generators With Linear Structures , 1997 .

[12]  Peter Hellekalek,et al.  On the assessment of random and quasi-random point sets , 1998 .

[13]  P. D. Coddington,et al.  Analysis of random number generators using Monte Carlo simulation , 1993, cond-mat/9309017.

[14]  Harald Niederreiter,et al.  New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .

[15]  K Entacher,et al.  Linear Congruential Generators for Parallel Monte Carlo: the Leap-Frog Case. , 1998, Monte Carlo Methods Appl..

[16]  U. Dieter,et al.  How to calculate shortest vectors in a lattice , 1975 .

[17]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[18]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[19]  Peter Hellekalek Don't trust parallel Monte Carlo! , 1998, Workshop on Parallel and Distributed Simulation.

[20]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[21]  J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .

[22]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[23]  Karl Entacher,et al.  Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.

[24]  A. De Matteis,et al.  Computation of critical distances within multiplicative congruential pseudorandom number sequences , 1992 .

[25]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[26]  Jürgen Eichenauer-Herrmann,et al.  A remark on long-range correlations in multiplicative congruential pseudo random number generators , 1989 .

[27]  A. De Matteis,et al.  A class of parallel random number generators , 1990, Parallel Comput..

[28]  Michael Mascagni Parallel Linear Congruential Generators with Prime Moduli , 1998, Parallel Comput..

[29]  Paul Coddington,et al.  Random Number Generators for Parallel Computers , 1997 .

[30]  Brian David Ripley,et al.  The lattice structure of pseudo-random number generators , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Karl Entacher,et al.  Parallel streams of linear random numbers in the spectral test , 1999, TOMC.

[32]  A. Matteis,et al.  Parallelization of random number generators and long-range correlations , 1988 .