Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations.

The construction of layered covalent carbon nitride polymers based on tri-s-triazine units has been achieved by using nucleobases (adenine, guanine, cytosine, thymine and uracil) and urea to establish a two-dimensional semiconducting structure that allows band-gap engineering applications. This biomolecule-derived binary carbon nitride polymer enables the generation of energized charge carrier with light-irradiation to induce photoredox reactions for stable hydrogen production and heterogeneous organosynthesis of C-O, C-C, C-N and N-N bonds, which may enrich discussion on chemical reactions in prebiotic conditions by taking account of the photoredox function of conjugated carbonitride semiconductors that have long been considered to be stable HCN-derived organic macromolecules in space.

[1]  C. Ziegler,et al.  Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. , 2014, Journal of the American Chemical Society.

[2]  C. Matthews Hydrogen cyanide polymers: from laboratory to space , 1995 .

[3]  Bo Wang,et al.  Polymeres graphitisches Kohlenstoffnitrid für die nachhaltige Photoredoxkatalyse , 2015 .

[4]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[5]  Yong Wang,et al.  Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. , 2012, Angewandte Chemie.

[6]  Xinchen Wang,et al.  Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. , 2015, Angewandte Chemie.

[7]  Zhenzhen Lin,et al.  Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. , 2013, Angewandte Chemie.

[8]  F. Huang,et al.  Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. , 2013, Chemical Society reviews.

[9]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[10]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[11]  M. Antonietti,et al.  Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling , 2013, Scientific Reports.

[12]  Hui‐Ming Cheng,et al.  α-Sulfur crystals as a visible-light-active photocatalyst. , 2012, Journal of the American Chemical Society.

[13]  Xinchen Wang,et al.  Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. , 2016, Angewandte Chemie.

[14]  Xinchen Wang,et al.  Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers , 2014 .

[15]  A. Nagai,et al.  Conjugated microporous polymers: design, synthesis and application. , 2013, Chemical Society reviews.

[16]  Chain‐Shu Hsu,et al.  Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. , 2015, Chemical Society reviews.

[17]  Xinchen Wang,et al.  Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution , 2014 .

[18]  P. Bracher Origin of life: Primordial soup that cooks itself. , 2015, Nature chemistry.

[19]  Xinchen Wang,et al.  Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie über die Vielzweckkatalyse hin zur nachhaltigen Chemie , 2012 .

[20]  Reiner Sebastian Sprick,et al.  Tunable organic photocatalysts for visible-light-driven hydrogen evolution. , 2015, Journal of the American Chemical Society.

[21]  Markus Antonietti,et al.  mpg-C(3)N(4)-Catalyzed selective oxidation of alcohols using O(2) and visible light. , 2010, Journal of the American Chemical Society.

[22]  A. Nagai,et al.  Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. , 2011, Journal of the American Chemical Society.

[23]  A. Pron,et al.  Polymers for electronics and spintronics. , 2013, Chemical Society reviews.

[24]  Xiaoming Liu,et al.  Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. , 2012, Journal of the American Chemical Society.

[25]  A. Krasheninnikov,et al.  Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. , 2014, Angewandte Chemie.

[26]  Markus Antonietti,et al.  Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. , 2008, Chemistry.

[27]  Xianzhi Fu,et al.  Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. , 2012, Angewandte Chemie.

[28]  J. Oró,et al.  Synthesis of adenine from ammonium cyanide , 1960 .

[29]  Xinchen Wang,et al.  Konjugierte Polymere: Katalysatoren für die photokatalytische Wasserstoffentwicklung , 2016 .

[30]  H. Tong,et al.  Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity , 2014 .

[31]  M. Antonietti,et al.  Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. , 2012, Angewandte Chemie.