The potential use of nanotechnology for antimicrobial functionalization of cellulose-containing fabrics

Abstract Currently, a wide range of antimicrobial agents are available and used to inhibit the growth or kill the pathogenic microorganisms for preventing the cross-infection and inhibiting the spread of infectious diseases, counteracting the development of unpleasant odor, and/or protecting the textile materials from damage due to the microbial attack. Recently, there has been an increased interest in replacing the non-eco-friendly antimicrobial agents and nonsustainable application techniques with eco-friendly sustainable ones for fabricating high performance and function textile materials to meet both the consumer needs for hygienic clothing, as well as textile ecology aspects, namely, production, human, and disposal ecology. This chapter highlights the advantages of using nanotechnology and nanostructured materials in antimicrobial and hygiene finishes of cellulose-containing textiles. Classification of the major antimicrobial agents based on nano-sized materials, preparation and application methods, mode of action and attack, evaluation of imparted antimicrobial efficacy, as well as future prospects would also be discussed.

[1]  Majid Montazer,et al.  Photo bleaching of wool using nano TiO2 under daylight irradiation , 2014 .

[2]  M. Ashraf,et al.  Recent Advances in Development of Antimicrobial Textiles , 2020 .

[3]  Doaa M Ragab,et al.  Magnetic nanoparticles for environmental and biomedical applications: A review , 2017 .

[4]  N. Ibrahim,et al.  Multifunctional cellulose-containing fabrics using modified finishing formulations , 2017 .

[5]  Jianzhong Ma,et al.  Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles , 2012 .

[6]  S. Hamdy,et al.  Environmentally benign Scouring of Cotton Knits Using Locally Produced Acid Pectinase Enzyme , 2019, Fibers and Polymers.

[7]  Yan Wang,et al.  The production, characterization and applications of nanoparticles in the textile industry , 2014 .

[8]  K. Shameli,et al.  Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without any Reducing Agent , 2011, International journal of molecular sciences.

[9]  Q. Wei,et al.  AFM characterization of nonwoven material functionalized by ZnO sputter coating , 2007 .

[10]  W. K. Chan,et al.  Antibacterial activity of ZnO nanorods prepared by a hydrothermal method , 2008 .

[11]  N. Ibrahim,et al.  Application of MCT-βCD to Modify Cellulose/Wool Blended Fabrics for Upgrading Their Reactive Printability and Antibacterial Functionality , 2018, Fibers and Polymers.

[12]  Nabil A. Ibrahim Dyeing of textile fibre blends , 2011 .

[13]  R. Chowdhury,et al.  Fire retardant finish of jute fabric with nano zinc oxide , 2017, Cellulose.

[14]  R. Leary,et al.  Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis , 2011 .

[15]  M. Abdel-Aziz,et al.  Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics , 2017 .

[16]  M. Mirjalili,et al.  Coated Cotton Gauze with Ag/ZnO/chitosan Nanocomposite as a Modern Wound Dressing , 2014 .

[17]  A. Alshatwi,et al.  Eco friendly natural dyes from Syzygium cumini (L) (Jambolan) fruit seed endosperm and to preparation of antimicrobial fabric and their washing properties , 2017, Fibers and Polymers.

[18]  N. Soin,et al.  Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review , 2014 .

[19]  M. Irfan,et al.  Characterization of antibacterial silver nanocluster/silica composite coating on high performance Kevlar® textile , 2017 .

[20]  M. Abdel-Aziz,et al.  Biosynthesized Silver Nanoparticles for Antibacterial Treatment of Cellulosic Fabrics Using O2-Plasma , 2014 .

[21]  C. Santhosh,et al.  Magnetic SiO[2]@CoFe[2]O[4] nanoparticles decorated on graphene oxide as efficient adsorbents for the removal of anionic pollutants from water , 2017 .

[22]  A. El-Shafei,et al.  Antibacterial Properties of Ester—Cross-Linked Cellulose–Containing Fabrics Post-Treated with Metal Salts , 2006 .

[23]  Mohammad Mansoob Khan,et al.  Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis , 2016 .

[24]  L. Liz‐Marzán,et al.  Silica‐Coated Plasmonic Metal Nanoparticles in Action , 2018, Advanced materials.

[25]  B. S. Butola,et al.  Green Chemistry based in-Situ Synthesis of Silver Nanoparticles for Multifunctional Finishing of Chitosan Polysaccharide Modified Cellulosic Textile Substrate. , 2019, International journal of biological macromolecules.

[26]  N. Ibrahim,et al.  New Approach for Improving Antibacterial Functions of Cotton Fabric , 2008 .

[27]  D. Meroni,et al.  A Close Look at the Structure of the TiO2-APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[28]  S. Dhoble,et al.  Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica , 2020, Results in Materials.

[29]  R. Ismail,et al.  Preparation and characterization of colloidal ZnO nanoparticles using nanosecond laser ablation in water , 2011 .

[30]  N. Ibrahim,et al.  Multipurpose Treatment of Cellulose-Containing Fabrics to Impart Durable Antibacterial and Repellent Properties , 2020, Fibers and Polymers.

[31]  M. Rani,et al.  Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. , 2017, Journal of environmental management.

[32]  Mohammad Mirjalili,et al.  Fabrication of photochromic, hydrophobic, antibacterial, and ultraviolet-blocking cotton fabric using silica nanoparticles functionalized with a photochromic dye , 2017 .

[33]  M. J. Umapathy,et al.  Novel hybrid chitosan blended MoO3–TiO2 nanocomposite film: evaluation of its solar light photocatalytic and antibacterial activities , 2015 .

[34]  N. Ibrahim,et al.  Plasma Treatment Technology for Surface Modification and Functionalization of Cellulosic Fabrics , 2020 .

[35]  S. Sharaf,et al.  Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. , 2013, Carbohydrate polymers.

[36]  J. Vadivelu,et al.  Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property , 2020 .

[37]  Nahid Hemmatinejad,et al.  One‐Pot Synthesis of Cu2O/ZnO Nanoparticles at Present of Folic Acid to Improve UV‐Protective Effect of Cotton Fabrics , 2015, Photochemistry and photobiology.

[38]  S. Hamdy,et al.  Biosynthesis, optimization and potential textile application of fungal cellulases/xylanase multifunctional enzyme preparation from Penicillium sp. SAF6 , 2016 .

[39]  N. Ibrahim,et al.  Chitosan ‐Based Composite Materials: Fabrication and Characterization , 2017 .

[40]  N. Ibrahim,et al.  Combined antimicrobial finishing and pigment printing of cotton/polyester blends. , 2013, Carbohydrate polymers.

[41]  Avanish Kumar Srivastava,et al.  Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health , 2017 .

[42]  R. Rajendran,et al.  Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics , 2012 .

[43]  M. Mirjalili,et al.  Effect of Silver Particle size on color and Antibacterial properties of silk and cotton Fabrics , 2016, Fibers and Polymers.

[44]  N. Ibrahim,et al.  A smart approach to add antibacterial functionality to cellulosic pigment prints. , 2013, Carbohydrate polymers.

[45]  N. Ibrahim,et al.  Advanced Materials and Technologies for Antimicrobial Finishing of Cellulosic Textiles , 2018, Handbook of Renewable Materials for Coloration and Finishing.

[46]  A. Basit,et al.  Functional finishing and coloration of textiles with nanomaterials , 2018 .

[47]  Basma M. Eid,et al.  Functional Finishes for Cotton‐Based Textiles: Current Situation and Future Trends , 2019, Textiles and Clothing.

[48]  N. Ibrahim,et al.  Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex , 2011 .

[49]  A. El-Shafei,et al.  Antimicrobial activity of cotton fabrics containing immobilized enzymes , 2007 .

[50]  N. Ibrahim,et al.  Polyfunctional cotton cellulose fabric using proper biopolymers and active ingredients , 2020, The Journal of The Textile Institute.

[51]  Singh Vishwabhan,et al.  Re view Article A REVIEW ON ETHNOMEDICAL USES OF OCIMUM SANCTUM (TULSI) , 2011 .

[52]  J. Goicoechea,et al.  Nanomaterials for Functional Textiles and Fibers , 2015, Nanoscale Research Letters.

[53]  B. Oh,et al.  Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity. , 2016, Journal of photochemistry and photobiology. B, Biology.

[54]  R. Gothalwal,et al.  Synthesis of Ag/Cu and Cu/Zn bimetallic nanoparticles using toddy palm: Investigations of their antitumor, antioxidant and antibacterial activities , 2020 .

[55]  N. Ibrahim,et al.  Functionalization of cellulose-containing fabrics by plasma and subsequent metal salt treatments. , 2012, Carbohydrate polymers.

[56]  B. Gao,et al.  Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. , 2016, Journal of hazardous materials.

[57]  M. B. Moghadam,et al.  Influence of sericin/TiO₂ nanocomposite on cotton fabric: part 1. Enhanced antibacterial effect. , 2013, Carbohydrate polymers.

[58]  Mohammad Mohsen Sarafraz,et al.  Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour , 2017 .

[59]  Sapana Jadoun,et al.  Modification of Textiles via Nanomaterials and Their Applications , 2020 .

[60]  Mazhar Hussain Peerzada,et al.  Functionalized nanomaterials for the aerospace, vehicle, and sports industries , 2020 .

[61]  Kesavan Devarayan,et al.  Biogenic synthesis of copper nanoparticles using Borreria hispida (Linn.) extract and its antioxidant activity , 2020, Materials Today: Proceedings.

[62]  R. Manivannan,et al.  Synthesis and Characterization of Oleic Acid-Capped Metallic Copper Nanoparticle via Chemical Reduction Method , 2019, Journal of The Institution of Engineers (India): Series E.

[63]  N. Ibrahim,et al.  Smart options for simultaneous functionalization and pigment coloration of cellulosic/wool blends. , 2013, Carbohydrate polymers.

[64]  Weiqu Liu,et al.  Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. , 2018, Carbohydrate polymers.

[65]  N. Ibrahim,et al.  Loading of chitosan - Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions. , 2017, International journal of biological macromolecules.

[66]  M. Hashem,et al.  Novel pre-treatment processes to promote linen-containing fabrics properties , 2008 .

[67]  N. Ibrahim,et al.  Development of functionalized cellulose/wool blended fabrics for high performance textiles , 2017 .

[68]  Vigneshwaran Nadanathangam,et al.  A simple and efficient protocol to develop durable multifunctional property to cellulosic materials using in situ generated nano-ZnO , 2017, Cellulose.

[69]  G. Malucelli,et al.  Thermal stability, flame retardancy and mechanical properties of cotton fabrics treated with inorganic coatings synthesized through sol–gel processes , 2012 .

[70]  S. Neogy,et al.  Room temperature ionic liquid assisted rapid synthesis of amorphous Se nanoparticles: Their prolonged stabilization and antioxidant studies , 2020 .

[71]  N. Ibrahim,et al.  Nano-structured metal oxides: synthesis, characterization and application for multifunctional cotton fabric , 2018, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[72]  N. Ibrahim,et al.  Effect of cellulase treatment on the extent of post-finishing and dyeing of cotton fabrics , 2005 .

[73]  Basma M. Eid,et al.  Optimization and Modification of Enzymatic Desizing of Starch-Size , 2004 .

[74]  J. Navarro,et al.  Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. , 2019, International journal of biological macromolecules.

[75]  Yuan Gao,et al.  Recent Advances in Antimicrobial Treatments of Textiles , 2008 .

[76]  N. Ibrahim,et al.  Combined UV-protecting and reactive printing of Cellulosic/wool blends. , 2013, Carbohydrate polymers.

[77]  N. R. Dhineshbabu,et al.  Enhanced functional properties of cotton fabrics using TiO2/SiO2 nanocomposites , 2016 .

[78]  A. A. Almetwally,et al.  A new approach for durable multifunctional coating of PET fabric , 2018, Applied Surface Science.

[79]  N. Vigneshwaran,et al.  Application of Metallic Nanoparticles in Textiles , 2010 .

[80]  S. Vijayakumar,et al.  Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications , 2020 .

[81]  A. Aktaş,et al.  Nano-Al2O3 multilayer film deposition on cotton fabrics by layer-by-layer deposition method , 2011 .

[82]  Jitendra Panwar,et al.  Biomimetic approach for multifarious synthesis of nanoparticles using metal tolerant fungi: A mechanistic perspective , 2020 .

[83]  Patricia I. Dolez,et al.  Application of nanomaterials in textile coatings and finishes , 2019, Nanomaterials-Based Coatings.

[84]  Shaoxian Song,et al.  A review on heavy metal ions adsorption from water by graphene oxide and its composites , 2017 .

[85]  Basma M. Eid,et al.  Development of new eco‐friendly options for cotton wet processing , 2004 .

[86]  N. Ibrahim,et al.  A new approach for imparting durable multifunctional properties to linen-containing fabrics. , 2017, Carbohydrate polymers.

[87]  Nabil A. Ibrahim,et al.  An eco-friendly – novel approach for attaining wrinkle – free/soft-hand cotton fabric , 2009 .

[88]  Nicola Cioffi,et al.  Metal nanoantimicrobials for textile applications , 2013 .

[89]  C. Pechyen,et al.  A flower shape-green synthesis and characterization of silver nanoparticles (AgNPs) with different starch as a reducing agent , 2020 .

[90]  N. Ibrahim,et al.  Innovative multi-functional treatments of ligno-cellulosic jute fabric , 2010 .

[91]  C. Baiocchi,et al.  Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. , 2001, Environmental science & technology.

[92]  Mariana Buşilă,et al.  Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites , 2015 .

[93]  N. A. Ibahim,et al.  Functionalization of linen/cotton pigment prints using inorganic nano structure materials. , 2013, Carbohydrate polymers.

[94]  Jeong-Hwan Oh,et al.  Synthesis of cobalt boride nanoparticles and h-BN nanocage encapsulation by thermal plasma , 2020 .

[95]  S. R. Silva,et al.  Decoration of multiwalled carbon nanotubes with protected iron nanoparticles , 2015 .

[96]  S. Hamdy,et al.  Green surface modification and nano-multifunctionalization of denim fabric , 2018, Cellulose.

[97]  N. Ibrahim,et al.  Green options for imparting antibacterial functionality to cotton fabrics. , 2018, International journal of biological macromolecules.

[98]  David Hui,et al.  Modern Applications of Nanotechnology in Textiles , 2008 .

[99]  Majid Montazer,et al.  A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. , 2010, Colloids and surfaces. B, Biointerfaces.

[100]  N. Ibrahim,et al.  Single-stage process for bifunctionalization and eco-friendly pigment coloration of cellulosic fabrics , 2015 .

[101]  Nabil A. Ibrahim,et al.  Effect of different capping agents on physicochemical and antimicrobial properties of ZnO nanoparticles , 2017, Chemical Papers.

[102]  Nabil A. Ibrahim,et al.  Nanomaterials for Antibacterial Textiles , 2015 .

[103]  E. Rybicki,et al.  Facile and durable antimicrobial finishing of cotton textiles using a silver salt and UV light. , 2013, Carbohydrate polymers.

[104]  M. Haghighi,et al.  Hydrothermal-assisted sol–gel synthesis of Cd-doped TiO2 nanophotocatalyst for removal of acid orange from wastewater , 2017, Journal of Sol-Gel Science and Technology.

[105]  J. Andreaus,et al.  Processing of cotton and man-made cellulosic fibers , 2019, Advances in Textile Biotechnology.

[106]  T Robinson,et al.  Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. , 2001, Bioresource technology.

[107]  Nabil A. Ibrahim,et al.  A new approach for natural dyeing and functional finishing of cotton cellulose , 2010 .

[108]  M. Rahimi,et al.  Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. , 2012, Colloids and surfaces. B, Biointerfaces.

[109]  M. Fernández-García,et al.  Cu–TiO2 systems for the photocatalytic H2 production: Influence of structural and surface support features , 2015 .

[110]  Binbin Yang,et al.  Targeted synthesis of NiS and NiS2 nanoparticles for high−performance hybrid supercapacitor via a facile green solid−phase synthesis route , 2020, Journal of Energy Storage.

[111]  N. Ibrahim,et al.  Novel Approach for Attaining Cotton Fabric with Multi-Functional Properties , 2010 .

[112]  W. Tremel,et al.  Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications , 2015 .

[113]  B. Mahltig,et al.  Functionalisation of textiles by inorganic sol–gel coatings , 2005 .

[114]  D. Kalra,et al.  Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract , 2020, Journal of King Saud University - Science.

[115]  Deepti Gupta,et al.  Antimicrobial properties of natural dyes against Gram‐negative bacteria , 2004 .

[116]  M. Montazer,et al.  Nano photo scouring and nano photo bleaching of raw cellulosic fabric using nano TiO2. , 2012, International journal of biological macromolecules.

[117]  S. Sudhahar,et al.  Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities , 2020, Journal of Environmental Chemical Engineering.

[118]  Majid Montazer,et al.  Nanofinishes for self-cleaning textiles , 2018 .

[119]  Stelios M. Potirakis,et al.  A wearable magnetic sensing device for identifying the presence of static magnetic fields , 2017 .

[120]  Esfandiar Pakdel,et al.  Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. , 2013, Journal of colloid and interface science.

[121]  Jie Huang,et al.  Research on the Structure and Performance of Bacterial Magnetic Nanoparticles , 2008, Journal of biomaterials applications.

[122]  T. Wen,et al.  One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. , 2013, ACS applied materials & interfaces.

[123]  T. Golden,et al.  A novel method for synthesis of clay/polymer stabilized silver nanoparticles , 2020 .

[124]  S. Gmouh,et al.  Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method , 2020, Journal of Sol-Gel Science and Technology.

[125]  A. Bhattacharyya,et al.  Nanotechnology – a new route to high-performance functional textiles , 2011 .

[126]  A. Khademhosseini,et al.  Nanotechnology in Textiles. , 2016, ACS nano.

[127]  N. Ibrahim,et al.  A novel approach for adding smart functionalities to cellulosic fabrics. , 2012, Carbohydrate polymers.

[128]  Woo Seok Yang,et al.  Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. , 2016, Journal of hazardous materials.

[129]  Z. Ji,et al.  Size-controlled synthesis, growth mechanism and magnetic properties of cobalt microspheres , 2017 .

[130]  G. Guebitz,et al.  Bio-preparation of cotton fabrics , 2001 .

[131]  Artur Cavaco-Paulo,et al.  Implementation of batchwise bioscouring of cotton knits , 2004 .

[132]  A. Bashari,et al.  Antibacterial finishing of cotton fabric via the chitosan/TPP self-assembled nano layers , 2014, Fibers and Polymers.

[133]  Clara Pereira,et al.  Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing , 2020 .

[134]  M. Montazer,et al.  Sodium hypophosphite and nano TiO2 inorganic catalysts along with citric acid on textile producing multi-functional properties , 2012 .

[135]  A. A. Almetwally,et al.  Functional finishes of stretch cotton fabrics. , 2013, Carbohydrate polymers.

[136]  B. P. Tripathi,et al.  Polydopamine mediated in situ synthesis of highly dispersed Gold nanoparticles for continuous flow catalysis and environmental remediation , 2020 .

[137]  M. Rani,et al.  Remediation of organic pollutants by potential functionalized nanomaterials , 2020 .

[138]  N. Ibrahim,et al.  Eco-friendly modification and antibacterial functionalization of viscose fabric , 2017 .

[139]  Tae Gwan Park,et al.  Substrate‐Independent Layer‐by‐Layer Assembly by Using Mussel‐Adhesive‐Inspired Polymers , 2008, Advanced materials.

[140]  Emerging Technologies for Source Reduction and End-of-Pipe Treatments of the Cotton-Based Textile Industry , 2018, Handbook of Textile Effluent Remediation.

[141]  Nabil A. Ibrahim,et al.  Economical and Ecological Biotreatment/Half Bleaching of Cotton-Containing Knit Fabrics on Industrial Scale , 2005 .

[142]  A. Gedanken,et al.  Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. , 2016, Ultrasonics sonochemistry.

[143]  M. Mirjalili,et al.  Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles , 2016 .

[144]  Shaohua Shen,et al.  Titanium dioxide nanostructures for photoelectrochemical applications , 2018, Progress in Materials Science.

[145]  Majid Montazer,et al.  Antimicrobial textile nanofinishes , 2018 .

[146]  N. Ibrahim,et al.  Eco‐friendly durable press finishing of cellulose‐containing fabrics , 2002 .

[147]  Debjani Das Ghosh,et al.  Natural polysaccharide derived carbon dot based in situ facile green synthesis of silver nanoparticles: Synergistic effect on breast cancer. , 2020, International journal of biological macromolecules.

[148]  Yury Gogotsi,et al.  Not just graphene: The wonderful world of carbon and related nanomaterials , 2015 .

[149]  M. P. Gashti,et al.  Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating , 2012 .

[150]  H. Ibrahim,et al.  Multifunctional finishing of cellulosic/polyester blended fabrics. , 2013, Carbohydrate polymers.

[151]  A. Gupta,et al.  PHOTOCATALYTIC DEGRADATION OF METHYL RED DYE IN AQUEOUS SOLUTIONS UNDER UV IRRADIATION USING AG+ DOPED TIO2 , 2005 .

[152]  M. Montazer,et al.  In-Situ sonosynthesis of Hedgehog-like nickel nanoparticles on polyester fabric producing magnetic properties. , 2018, Ultrasonics sonochemistry.

[153]  B. S. Butola,et al.  Development of Multi-functional Properties on Cotton Fabric by In Situ Application of TiO2 and ZnO Nanoparticles , 2018 .

[154]  Z. Abdullaeva Classification of Nanomaterials , 2017, Nanomaterials in Advanced Medicine.

[155]  A. Amr,et al.  Poly(acrylic acid)/poly(ethylene glycol) adduct for attaining multifunctional cellulosic fabrics. , 2012, Carbohydrate polymers.

[156]  A. A. Aly,et al.  Green Approach for Multifunctionalization of Cellulose-Containing Fabrics , 2018, Fibers and Polymers.

[157]  Ramchander Merugu,et al.  Synthesis, characterization and antimicrobial activity of bimetallic silver and copper nanoparticles using fruit pulp aqueous extracts of Moringa oleifera , 2020 .

[158]  M. Abdel-Aziz,et al.  Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates , 2016 .

[159]  N. Gokarneshan,et al.  Influence of Nanofinishes on the Antimicrobial Properties of Fabrics , 2012 .

[160]  N. Sultana,et al.  An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential , 2020 .

[161]  Zongyuan Liu,et al.  Preparation of hierarchical leaf-like cobalt and enhanced magnetic properties by a new low-temperature synthesis method , 2016 .

[162]  Fei Fei Wu,et al.  The Influence of the Magnetic Fiber Content on Fabric Wearability , 2013 .

[163]  N. Enomoto,et al.  Aging of starting solutions for nanoparticles synthesis with two different ultrasonication. , 2020, Ultrasonics sonochemistry.

[164]  S. Maity,et al.  UV Protection via Nanomaterials , 2020 .

[165]  S. H. Hasan,et al.  Synthesis and characterization of rGO/ZrO2 nanocomposite for enhanced removal of fluoride from water: kinetics, isotherm, and thermodynamic modeling and its adsorption mechanism , 2016 .

[166]  Kiril Hristovski,et al.  Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. , 2016, Environmental science & technology.