Quantum dots: lasers and amplifiers

Continuous wave room-temperature output power of ~ 3 W for edge emitters and of 1.2 mW for vertical-cavity surface-emitting lasers is realized for GaAs-based devices using InAs quantum dots (QDs) operating at 1.3 µm. Characteristic temperatures up to 170 K below 330 K are realized. Simultaneously, differential efficiency exceeds 80% for these devices. Lasers emitting up to 12 W at 1140–1160 nm are useful as pump sources for Tm3+-doped fibres for frequency up-conversion to 470 nm. Both types of lasers show transparency current densities of 6 A cm−2 per dot layer, ηint = 98% and αi around 1.5 cm−1. Long operation lifetimes (above 3000 h at 50 °C heatsink temperature at 1.5 W CW) and improved radiation hardness as compared to quantum well (QW) devices are manifested. Cut-off frequencies of about 10 GHz at 1100 nm and 6 GHz at 1300 nm and low α factors resulting in reduced filamentation and improved M2 values in single-mode operation are realized. Quantum dot semiconductor optical amplifiers (QD SOAs) demonstrate gain recovery times of 120–140 fs, 4–7 times faster than bulk/QW SOAs. The breakthrough became possible due to the development of self-organized growth in QD technology.

[1]  D. Bimberg,et al.  Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers , 2000, IEEE Photonics Technology Letters.

[2]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[3]  John H. Marsh,et al.  Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control , 1998 .

[4]  Dieter Bimberg,et al.  Spontaneous ordering of nanostructures on crystal surfaces , 1999 .

[5]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[6]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers , 2001 .

[7]  Serge Luryi,et al.  Tunneling-injection quantum-dot laser: ultrahigh temperature stability , 2001 .

[8]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Joo-Heon Ahn,et al.  High temperature performance of self-organised quantum dot laser with stacked p-doped active region , 2002 .

[10]  Dieter Bimberg,et al.  Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers , 2001 .

[11]  D. Bimberg,et al.  High-reliability MOCVD-grown quantum dot laser , 2002 .

[12]  Dieter Bimberg,et al.  Gain and Threshold of Quantum Dot Lasers: Theory and Comparison to Experiments , 1997 .

[13]  Nikolai N. Ledentsov,et al.  Epitaxy of Nanostructures , 2003 .

[14]  Dennis G. Deppe,et al.  The role of p-type doping and the density of states on the modulation response of quantum dot lasers , 2002 .

[15]  S. Mikhrin,et al.  Long-term stability of long-wavelength (>1.25 µm) quantum-dot lasers fabricated on GaAs substrates , 2003 .

[16]  Egorov,et al.  Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. , 1996, Physical review. B, Condensed matter.

[17]  Hiroshi Ishikawa,et al.  Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In x Ga 1-x As/GaAs quantum dot lasers , 2000 .

[18]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[19]  Rossin,et al.  Kinetics of free-exciton luminescence in GaAs. , 1992, Physical review. B, Condensed matter.

[20]  Nikolai N. Ledentsov,et al.  Ordered arrays of quantum dots: Formation, electronic spectra, relaxation phenomena, lasing , 1996 .

[21]  D. Bimberg,et al.  Quantum-dot heterostructure lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  N. Ledentsov,et al.  Spontaneous ordering of arrays of coherent strained islands. , 1995, Physical review letters.

[23]  Dieter Bimberg,et al.  Enhanced radiation hardness of quantum dot lasers to high energy proton irradiation , 2001 .

[24]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[25]  Andreas Stintz,et al.  Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers , 2001 .

[26]  Nikolai N. Ledentsov,et al.  InGaAs/GaAs Quantum Dot Lasers with Ultrahigh Characteristic Temperature (T 0= 385 K) Grown by Metal Organic Chemical Vapour Deposition , 1997 .

[27]  Mikhail V. Maximov,et al.  Complete suppression of filamentation and superior beam quality in quantum-dot lasers , 2003 .

[28]  Nikolai N. Ledentsov,et al.  1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .

[29]  P. Bhattacharya,et al.  Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature , 2002 .

[30]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[31]  Nikolai N. Ledentsov,et al.  Quantum dot lasers: breakthrough in optoelectronics , 2000 .

[32]  Hiroshi Ishikawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s , 2001 .

[33]  Dieter Bimberg,et al.  Lateral-cavity spectral hole burning in quantum-dot lasers , 2002 .

[34]  Dieter Bimberg,et al.  Quantum dots: Paradigm changes in semiconductor physics , 1999 .

[35]  Nikolai N. Ledentsov,et al.  Self-Organized InGaAs Quantum Dots for Advanced Applications in Optoelectronics , 2002 .

[36]  S. Zaitsev The properties of low-threshold heterolasers with clusters of quantum dots , 1997 .

[37]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[38]  Mikhail V. Maximov,et al.  Gain and threshold characteristics of long wavelength lasers based on InAs/GaAs quantum dots formed by activated alloy phase separation , 2001 .

[39]  N. Ledentsov,et al.  Self-organized growth of semiconductor nanostructures for novel light emitters , 2000 .

[40]  Nikolai N. Ledentsov,et al.  Reversibility of the island shape, volume and density in Stranski-Krastanow growth , 2001 .

[41]  Nikolai N. Ledentsov,et al.  Self-organization processes in MBE-grown quantum dot structures , 1995 .

[42]  N. Ledentsov Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts , 2002 .