暂无分享,去创建一个
[1] K. Appel,et al. Every planar map is four colorable. Part II: Reducibility , 1977 .
[2] Alexandr V. Kostochka,et al. Hadwiger Number and the Cartesian Product of Graphs , 2008, Graphs Comb..
[3] Jonah Blasiak. A special case of Hadwiger's conjecture , 2007, J. Comb. Theory, Ser. B.
[4] Béla Bollobás,et al. Hadwiger's Conjecture is True for Almost Every Graph , 1980, Eur. J. Comb..
[5] L. Sunil Chandran,et al. Hadwiger's conjecture for proper circular arc graphs , 2009, Eur. J. Comb..
[6] Michael Stiebitz,et al. On a special case of Hadwiger's conjecture , 2003, Discuss. Math. Graph Theory.
[7] Xuding Zhu,et al. Coloring the square of a K4-minor free graph , 2003, Discret. Math..
[8] Ken-ichi Kawarabayashi,et al. Any 7-Chromatic Graphs Has K7 Or K4,4 As A Minor , 2005, Comb..
[9] Deming Li,et al. Hadwiger's conjecture for powers of cycles and their complements , 2007, Eur. J. Comb..
[10] Bruce A. Reed,et al. Hadwiger's conjecture for line graphs , 2004, Eur. J. Comb..
[11] G. Wegner. Graphs with given diameter and a coloring problem , 1977 .
[12] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[13] Maria Chudnovsky,et al. Hadwiger's conjecture for quasi-line graphs , 2008, J. Graph Theory.
[14] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[15] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[16] Frank Kammer,et al. Approximation Algorithms for Intersection Graphs , 2012, Algorithmica.