An algebraic approach to data languages and timed languages

Algebra offers an elegant and powerful approach to understand regular languages and finite automata. Such framework has been notoriously lacking for timed languages and timed automata. We introduce the notion of monoid recognizability for data languages, which includes timed languages as special case, in a way that respects the spirit of the classical situation. We study closure properties and hierarchies in this model and prove that emptiness is decidable under natural hypotheses. Our class of recognizable languages properly includes many families of deterministic timed languages that have been proposed until now, and the same holds for non-deterministic versions.

[1]  Patricia Bouyer,et al.  An Algebraic Characterization of Data and Timed Languages , 2001, CONCUR.

[2]  Christian,et al.  Timed Automata with Periodi Clo k Constraints , 1999 .

[3]  Paul Caspi,et al.  Timed regular expressions , 2002, JACM.

[4]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[5]  Stephan Merz,et al.  Model Checking , 2000 .

[6]  Wieslaw Zielonka,et al.  Controlled Timed Automata , 1998, CONCUR.

[7]  Pierre-Yves Schobbens,et al.  The Regular Real-Time Languages , 1998, ICALP.

[8]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[9]  Joffroy Beauquier,et al.  Langages sur des alphabets infinis , 1980, Discret. Appl. Math..

[10]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[11]  Thomas A. Henzinger,et al.  The Expressive Power of Clocks , 1995, ICALP.

[12]  Thomas A. Henzinger,et al.  A Determinizable Class of Timed Automata , 1994, CAV.

[13]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[14]  Thomas Schwentick,et al.  On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[15]  Patricia Bouyer,et al.  Decomposition and Composition of Timed Automata , 1999, ICALP.

[16]  Patricia Bouyer,et al.  A logical characterization of data languages , 2002, Inf. Process. Lett..

[17]  Eugene Asarin Equations on Timed Languages , 1998, HSCC.

[18]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[19]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[20]  Nissim Francez,et al.  Finite-Memory Automata , 1994, Theor. Comput. Sci..

[21]  Patricia Bouyer,et al.  A Kleene/Büchi-like Theorem for Clock Languages , 2001, J. Autom. Lang. Comb..

[22]  Thomas A. Henzinger,et al.  Event-Clock Automata: A Determinizable Class of Timed Automata , 1999, Theor. Comput. Sci..

[23]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[24]  Christian Choffrut,et al.  Timed Automata with Periodic Clock Constraints , 2000, J. Autom. Lang. Comb..

[25]  Thomas Schwentick,et al.  Towards Regular Languages over Infinite Alphabets , 2001, MFCS.

[26]  Paul Caspi,et al.  A Kleene theorem for timed automata , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[27]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .