Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions.

The potential energy curve of the F2 molecule is calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC) using Configuration Interaction (CI)-type trial wavefunctions. To keep the number of determinants reasonable and thus make FN-DMC calculations feasible in practice, the CI expansion is restricted to those determinants that contribute the most to the total energy. The selection of the determinants is made using the CIPSI approach (Configuration Interaction using a Perturbative Selection made Iteratively). The trial wavefunction used in FN-DMC is directly issued from the deterministic CI program; no Jastrow factor is used and no preliminary multi-parameter stochastic optimization of the trial wavefunction is performed. The nodes of CIPSI wavefunctions are found to reduce significantly the fixed-node error and to be systematically improved upon increasing the number of selected determinants. To reduce the non-parallelism error of the potential energy curve, a scheme based on the use of a R-dependent number of determinants is introduced. Using Dunning's cc-pVDZ basis set, the FN-DMC energy curve of F2 is found to be of a quality similar to that obtained with full configuration interaction/cc-pVQZ.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Michel Caffarel,et al.  Large-Scale Quantum Monte Carlo Electronic Structure Calculations on the EGEE Grid , 2012 .

[3]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[4]  D. Ceperley,et al.  Quantum Monte Carlo methods in chemistry , 2007 .

[5]  K E Schmidt,et al.  Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. , 2006, Physical review letters.

[6]  Stefano Evangelisti,et al.  Convergence of an improved CIPSI algorithm , 1983 .

[7]  Matthias Troyer,et al.  Quantum Monte Carlo , 2004 .

[8]  Peter Reynolds,et al.  Monte Carlo Methods In Ab Initio Quantum Chemistry , 1994 .

[9]  Robert J. Harrison,et al.  Approximating full configuration interaction with selected configuration interaction and perturbation theory , 1991 .

[10]  M. Caffarel,et al.  Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo. , 2010, The Journal of chemical physics.

[11]  William Jalby,et al.  Quantum Monte Carlo for large chemical systems: Implementing efficient strategies for petascale platforms and beyond , 2012, J. Comput. Chem..

[12]  M. Casula,et al.  Correlated geminal wave function for molecules: an efficient resonating valence bond approach. , 2004, The Journal of chemical physics.

[13]  A. Savin,et al.  Quantum Monte Carlo Calculations with Multi-Reference Trial Wave Functions , 1997 .

[14]  M. Gordon,et al.  Accurate ab initio potential energy curve of F2. I. Nonrelativistic full valence configuration interaction energies using the correlation energy extrapolation by intrinsic scaling method. , 2007, The Journal of chemical physics.

[15]  Claudia Filippi,et al.  Multiconfiguration wave functions for quantum Monte Carlo calculations of first‐row diatomic molecules , 1996 .

[16]  C J Umrigar,et al.  Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules. , 2008, The Journal of chemical physics.

[17]  M. Persico,et al.  Multireference perturbation CI II. Selection of the zero-order space , 1997 .

[18]  C. Amovilli,et al.  Size-Extensive Wave Functions for Quantum Monte Carlo: A Linear Scaling Generalized Valence Bond Approach. , 2012, Journal of chemical theory and computation.

[19]  C. Umrigar,et al.  Quantum Monte Carlo with Jastrow-valence-bond wave functions. , 2011, The Journal of chemical physics.

[20]  Imre G. Csizmadia,et al.  Computational Theoretical Organic Chemistry , 1981 .

[21]  William Jalby,et al.  QMC=Chem: A Quantum Monte Carlo Program for Large-Scale Simulations in Chemistry at the Petascale Level and beyond , 2012, VECPAR.

[22]  Robert J. Buenker,et al.  Development of a Computational Strategy in Electronic Structure Calculations: Error Analysis in Configuration Interaction Treatments , 1981 .

[23]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[24]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[25]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[26]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[27]  F. A. Matsen,et al.  Spin-Free Quantum Chemistry , 1964 .

[28]  R J Needs,et al.  Inhomogeneous backflow transformations in quantum Monte Carlo calculations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  P. S. Epstein,et al.  The Stark effect from the point of view of Schroedinger's quantum theory , 1926 .

[30]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[31]  M. Gordon,et al.  Accurate ab initio potential energy curve of F2. II. Core-valence correlations, relativistic contributions, and long-range interactions. , 2007, The Journal of chemical physics.

[32]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[33]  Robert J. Buenker,et al.  Applicability of the multi-reference double-excitation CI (MRD-CI) method to the calculation of electronic wavefunctions and comparison with related techniques , 1978 .

[34]  K. Ruedenberg,et al.  Ab initio potential energy curve of F2. IV. Transition from the covalent to the van der Waals region: competition between multipolar and correlation forces. , 2009, The Journal of chemical physics.

[35]  Ali Alavi,et al.  Taming the First-Row Diatomics: A Full Configuration Interaction Quantum Monte Carlo Study. , 2012, Journal of chemical theory and computation.

[36]  R. Nesbet Configuration interaction in orbital theories , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  Robert J. Buenker,et al.  The ground state of the CN+ ion: a multi-reference Ci study , 1980 .

[38]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[39]  A. Scemama,et al.  Accurate nonrelativistic ground-state energies of 3d transition metal atoms. , 2014, The Journal of chemical physics.

[40]  Jules W. Moskowitz,et al.  Correlated Monte Carlo wave functions for the atoms He through Ne , 1990 .

[41]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[42]  Richard G. Hennig,et al.  Alleviation of the Fermion-sign problem by optimization of many-body wave functions , 2007 .

[43]  Ernest R. Davidson,et al.  Studies in Configuration Interaction: The First-Row Diatomic Hydrides , 1969 .

[44]  Amos G. Anderson,et al.  Generalized valence bond wave functions in quantum Monte Carlo. , 2010, The Journal of chemical physics.

[45]  Michel Caffarel,et al.  Using perturbatively selected configuration interaction in quantum Monte Carlo calculations , 2013 .