Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network

We consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). However, STDP was not considered in previous works on stochastic burst synchronization (SBS) between noise-induced burstings of sub-threshold neurons. Here, we study the effect of additive STDP on SBS by varying the noise intensity D in the Barabási–Albert scale-free network (SFN). One of our main findings is a Matthew effect in synaptic plasticity which occurs due to a positive feedback process. Good burst synchronization (with higher bursting measure) gets better via long-term potentiation (LTP) of synaptic strengths, while bad burst synchronization (with lower bursting measure) gets worse via long-term depression (LTD). Consequently, a step-like rapid transition to SBS occurs by changing D, in contrast to a relatively smooth transition in the absence of STDP. We also investigate the effects of network architecture on SBS by varying the symmetric attachment degree $$l^*$$l∗ and the asymmetry parameter $$\Delta l$$Δl in the SFN, and Matthew effects are also found to occur by varying $$l^*$$l∗ and $$\Delta l$$Δl. Furthermore, emergences of LTP and LTD of synaptic strengths are investigated in details via our own microscopic methods based on both the distributions of time delays between the burst onset times of the pre- and the post-synaptic neurons and the pair-correlations between the pre- and the post-synaptic instantaneous individual burst rates (IIBRs). Finally, a multiplicative STDP case (depending on states) with soft bounds is also investigated in comparison with the additive STDP case (independent of states) with hard bounds. Due to the soft bounds, a Matthew effect with some quantitative differences is also found to occur for the case of multiplicative STDP.

[1]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[2]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[3]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  G. Govindaiah,et al.  Heterogeneity of firing properties among rat thalamic reticular nucleus neurons , 2007, The Journal of physiology.

[5]  J. Gross,et al.  Brain Rhythms of Pain , 2017, Trends in Cognitive Sciences.

[6]  Gouhei Tanaka,et al.  Synchronization and propagation of bursts in networks of coupled map neurons. , 2006, Chaos.

[7]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[8]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[9]  A. Selverston,et al.  Synchronous Behavior of Two Coupled Biological Neurons , 1998, chao-dyn/9811010.

[10]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[11]  Jinzhi Lei,et al.  Burst synchronization transitions in a neuronal network of subnetworks. , 2011, Chaos.

[12]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[13]  W. Gerstner,et al.  Spike-Timing-Dependent Plasticity: A Comprehensive Overview , 2012, Front. Syn. Neurosci..

[14]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[15]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[16]  Antonio M. Batista,et al.  Delayed feedback control of bursting synchronization in a scale-free neuronal network , 2010, Neural Networks.

[17]  Peter A. Tass,et al.  Desynchronizing electrical and sensory coordinated reset neuromodulation , 2012, Front. Hum. Neurosci..

[18]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  S. Wang,et al.  Malleability of Spike-Timing-Dependent Plasticity at the CA3–CA1 Synapse , 2006, The Journal of Neuroscience.

[20]  Olaf Sporns,et al.  Small worlds inside big brains , 2006, Proceedings of the National Academy of Sciences.

[21]  Qishao Lu,et al.  Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling , 2012, Cognitive Neurodynamics.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  D. Ulrich,et al.  Firing Mode-Dependent Synaptic Plasticity in Rat Neocortical Pyramidal Neurons , 2004, The Journal of Neuroscience.

[24]  Antal Berényi,et al.  Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples , 2016, Neuron.

[25]  Maxi San Miguel,et al.  STOCHASTIC EFFECTS IN PHYSICAL SYSTEMS , 2000 .

[26]  이기복 18 , 2000, Testament d'un patriote exécuté.

[27]  Francis Deng Cog , 2019, Radiopaedia.org.

[28]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[29]  Bin Deng,et al.  Chaotic phase synchronization in small-world networks of bursting neurons. , 2011, Chaos.

[30]  Carl van Vreeswijk,et al.  Patterns of Synchrony in Neural Networks with Spike Adaptation , 2001, Neural Computation.

[31]  M. Womack,et al.  Active Contribution of Dendrites to the Tonic and Trimodal Patterns of Activity in Cerebellar Purkinje Neurons , 2002, The Journal of Neuroscience.

[32]  A. Hirayama,et al.  117 , 2018, The Devil's Fork.

[33]  Martin Tobias Huber,et al.  Stimulus-response curves of a neuronal model for noisy subthreshold oscillations and related spike generation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Matthew A. Wilson,et al.  From hippocampus to V1: Effect of LTP on spatio-temporal dynamics of receptive fields , 2000, Neurocomputing.

[35]  S. R. Lopes,et al.  Chaotic phase synchronization in scale-free networks of bursting neurons. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[37]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[38]  Mark T. Harnett,et al.  Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons , 2009, Neuron.

[39]  Woochang Lim,et al.  Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity , 2017, Neural Networks.

[40]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[41]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[42]  Richard F. Betzel,et al.  Modular Brain Networks. , 2016, Annual review of psychology.

[43]  Eran Stark,et al.  Sharp wave ripples during learning stabilize hippocampal spatial map , 2017, Nature Neuroscience.

[44]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[45]  Karin Hinzer,et al.  Encoding with Bursting, Subthreshold Oscillations, and Noise in Mammalian Cold Receptors , 1996, Neural Computation.

[46]  B. M. Fulk MATH , 1992 .

[47]  Peter Andras,et al.  Simulation of robustness against lesions of cortical networks , 2007, The European journal of neuroscience.

[48]  Alexander L. Green Cortical Oscillations in Health and Disease. Oxford Univ. Press, New York (2010), June, Color plates, Hard cover, 448 pp, $74.95., ISBN: 978-0-19-534279-6 , 2010 .

[49]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[50]  Markus Diesmann,et al.  Spike-Timing-Dependent Plasticity in Balanced Random Networks , 2007, Neural Computation.

[51]  G. Buzsáki,et al.  Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus , 2017, Science.

[52]  Jürgen Kurths,et al.  Phase synchronization in ensembles of bursting oscillators. , 2004, Physical review letters.

[53]  K. Schäfer,et al.  Oscillation and noise determine signal transduction in shark multimodal sensory cells , 1994, Nature.

[54]  Qishao Lu,et al.  Burst synchronization of electrically and chemically coupled map-based neurons , 2009 .

[55]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[56]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[57]  Livy 22 , 2012, Tao te Ching.

[58]  K. Aihara,et al.  Array-enhanced coherence resonance and forced dynamics in coupled FitzHugh-Nagumo neurons with noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[60]  Iryna Omelchenko,et al.  Synchronization of slow-fast systems , 2010 .

[61]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[62]  T. Sejnowski,et al.  Cortical gamma band synchronization through somatostatin interneurons , 2017, Nature Neuroscience.

[63]  Nicole C. Swann,et al.  Gamma Oscillations in the Hyperkinetic State Detected with Chronic Human Brain Recordings in Parkinson's Disease , 2016, Journal of Neuroscience.

[64]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[65]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[66]  Hu,et al.  Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  J. Hindmarsh,et al.  A model of the nerve impulse using two first-order differential equations , 1982, Nature.

[68]  A. Longtin AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING NEURONS , 1997 .

[69]  L. Trussell,et al.  Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus , 2004, Nature Neuroscience.

[70]  Robert M. Miura,et al.  Perturbation techniques for models of bursting electrical activity in pancreatic b-cells , 1992 .

[71]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[72]  Ricardo L. Viana,et al.  Bursting synchronization in scale-free networks , 2009 .

[73]  J. Kurths,et al.  Array-enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise. , 2001, Physical review letters.

[74]  Haim Sompolinsky,et al.  Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity , 2003, The Journal of Neuroscience.

[75]  Danielle M. Santarelli,et al.  The Developing Brain , 2017 .

[76]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[77]  Pablo Varona,et al.  Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis , 2001, Biological Cybernetics.

[78]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.

[79]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[80]  Woochang Lim,et al.  Fast sparsely synchronized brain rhythms in a scale-free neural network. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  T. A. Kinard,et al.  Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances. , 1999, Biophysical journal.

[82]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[83]  Fabrizio Gabbiani,et al.  Burst firing in sensory systems , 2004, Nature Reviews Neuroscience.

[84]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[85]  Qingyun Wang,et al.  Taming desynchronized bursting with delays in the Macaque cortical network , 2011 .

[86]  Woochang Lim,et al.  Thermodynamic Order Parameters and Statistical-Mechanical Measures for Characterization of the Burst and Spike Synchronizations of Bursting Neurons , 2014, 1403.3994.

[87]  J. Hindmarsh,et al.  A model of a thalamic neuron , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[88]  Chris G. Antonopoulos,et al.  Spike timing-dependent plasticity induces non-trivial topology in the brain , 2016, Neural Networks.

[89]  Jonathan E. Rubin Burst synchronization , 2007, Scholarpedia.

[90]  D. Long Networks of the Brain , 2011 .

[91]  J. Keizer,et al.  Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.

[92]  Woochang Lim,et al.  Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons , 2015, Neural Networks.

[93]  R. Morgan,et al.  Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures , 2008, Proceedings of the National Academy of Sciences.

[94]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[95]  Y. Yaari,et al.  Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons , 2001, The Journal of Neuroscience.

[96]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[97]  Jürgen Kurths,et al.  Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillators. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[99]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[100]  Qishao Lu,et al.  Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction , 2012, Cognitive Neurodynamics.

[101]  Woochang Lim,et al.  Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons , 2014, Cognitive Neurodynamics.

[102]  R L Viana,et al.  Synchronization of bursting Hodgkin-Huxley-type neurons in clustered networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[104]  S. R. Lopes,et al.  Phase synchronization of bursting neurons in clustered small-world networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  Jasmine A. Nirody,et al.  Exploiting pallidal plasticity for stimulation in Parkinson’s disease , 2015, Journal of neural engineering.

[106]  J. Kurths,et al.  Array-Enhanced Coherence Resonance , 2001 .

[107]  Christof Koch,et al.  Local Field Potentials Encode Place Cell Ensemble Activation during Hippocampal Sharp Wave Ripples , 2015, Neuron.

[108]  Péter P. Ujma,et al.  Nap sleep spindle correlates of intelligence , 2015, Scientific Reports.

[109]  Shigeru Shinomoto,et al.  Kernel bandwidth optimization in spike rate estimation , 2009, Journal of Computational Neuroscience.

[110]  Peter A. Tass,et al.  Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity , 2013, Scientific Reports.

[111]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[112]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[113]  A Garfinkel,et al.  Evidence for a novel bursting mechanism in rodent trigeminal neurons. , 1998, Biophysical journal.

[114]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[115]  Juergen Kurths,et al.  Multi-time-scale synchronization and information processing in bursting neuron networks , 2007 .

[116]  Kamran Diba,et al.  Regulation of Hippocampal Firing by Network Oscillations during Sleep , 2016, Current Biology.

[117]  Z. Duan,et al.  Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[119]  E L Lameu,et al.  Suppression of bursting synchronization in clustered scale-free (rich-club) neuronal networks. , 2012, Chaos.

[120]  Claudia Wiedemann,et al.  Neuronal Networks: A hub of activity , 2010, Nature Reviews Neuroscience.

[121]  内山 健太郎,et al.  26 , 2015, Magical Realism for Non-Believers.

[122]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[123]  Ruedi Stoop,et al.  Phase synchronization of coupled bursting neurons and the generalized Kuramoto model , 2015, Neural Networks.

[124]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[125]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[126]  Phillip Larimer,et al.  Nonrandom Local Circuits in the Dentate Gyrus , 2008, The Journal of Neuroscience.

[127]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[128]  Guanrong Chen,et al.  Synchronous Bursts on Scale-Free Neuronal Networks with Attractive and Repulsive Coupling , 2010, PloS one.

[129]  I. Freiman Conditioned Reflexes and Neuron Organization , 1950 .

[130]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[131]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[132]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[133]  Malcolm P. Young,,et al.  Analysis of Connectivity: Neural Systems in the Cerebral Cortex , 1994, Reviews in the neurosciences.

[134]  Henrik Zetterberg,et al.  Neurofilament Light: A Dynamic Cross-Disease Fluid Biomarker for Neurodegeneration , 2016, Neuron.

[135]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[136]  Jesper Tegnér,et al.  Spike-timing-dependent plasticity: common themes and divergent vistas , 2002, Biological Cybernetics.

[137]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[138]  Henning Sprekeler,et al.  Inhibitory synaptic plasticity: spike timing-dependence and putative network function , 2013, Front. Neural Circuits.

[139]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[140]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[141]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[142]  M. Carandini,et al.  Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex , 2016, Neuron.

[143]  Woochang Lim,et al.  Stochastic bursting synchronization in a population of subthreshold Izhikevich neurons , 2012 .

[144]  李聖昊,et al.  28 , 1910, Tao te Ching.

[145]  Mingzhou Ding,et al.  Transitions to synchrony in coupled bursting neurons. , 2004, Physical review letters.

[146]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[147]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[148]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[149]  Roger D. Traub,et al.  Comprar Cortical Oscillations in Health and Disease | Roger Traub | 9780195342796 | Oxford University Press , 2010 .

[150]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[151]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[152]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[153]  M. Wilson,et al.  Coordinated memory replay in the visual cortex and hippocampus during sleep , 2007, Nature Neuroscience.

[154]  Qishao Lu,et al.  Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling , 2012, Cognitive Neurodynamics.

[155]  Raoul Borges,et al.  Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin-Huxley neuronal network , 2015, Commun. Nonlinear Sci. Numer. Simul..

[156]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[157]  Lu Qi-Shao,et al.  Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons , 2005 .

[158]  A. Hodgkin The local electric changes associated with repetitive action in a non‐medullated axon , 1948, The Journal of physiology.

[159]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[160]  Γιώργος Χ. Χιονίδης 21 , 1995, Between Two Shores.

[161]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[162]  金鏞日,et al.  23 , 1973, You Can Cross the Massacre on Foot.

[163]  P. Bressloff,et al.  Bursting: The genesis of rhythm in the nervous system , 2005 .

[164]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[165]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[166]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[167]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[168]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[169]  V. K. Henner,et al.  Ordinary and Partial Differential Equations , 2013 .

[170]  J. C. Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. , 1999, Journal of neurophysiology.

[171]  Andrey Shilnikov,et al.  Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.

[172]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[173]  Yuji Ikegaya,et al.  Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. , 2010, Biophysical journal.

[174]  이광수,et al.  15 , 2019, Tao te Ching.

[175]  D. Chik,et al.  Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[176]  منصوره مومن هروی,et al.  90 , 2013, Operation of Maritime Transport.

[177]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[178]  O. Badawi,et al.  107 , 2019, Critical Care Medicine.

[179]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.