Hydrothermally synthesized ZnSe@FeSe nanocomposite: A promising candidate for energy storage devices

[1]  N. Tarwal,et al.  Effect of substrate temperature on the properties of spray-deposited Cu2NiSnS4 films , 2023, Materials Letters.

[2]  N. Tarwal,et al.  Development of ultrathin nanoflakes of Ni–Co LDH films by hydrothermal route for energy storage application , 2023, Journal of Physics and Chemistry of Solids.

[3]  J. Jang,et al.  Recent advances in Metal-Organic Framework (MOF) derived metal oxides and their composites with carbon for energy storage applications , 2023, Journal of Energy Storage.

[4]  N. Tarwal,et al.  Multifunctionality of chemically synthesized quaternary copper nickel tin sulfide (Cu2NiSnS4) compound , 2023, Sustainable Materials and Technologies.

[5]  M. Z. Ansari,et al.  Fabrication of novel zinc selenide/cadmium oxide nanohybrid electrode via hydrothermal route for energy storage application , 2023, Journal of Energy Storage.

[6]  K. Jabbour,et al.  Facile synthesis of 2-D rGO based SmSe nanohybrid via hydrothermal route for solid-state supercapacitor , 2023, Materials Chemistry and Physics.

[7]  Muhammad Imran,et al.  Development of binder-free MoTe2/rGO electrode via hydrothermal route for supercapacitor application , 2023, Electrochimica Acta.

[8]  P. S. Patil,et al.  Solvothermal synthesis of binder free Ni-MOF thin films for supercapacitor electrodes , 2023, Journal of Solid State Chemistry.

[9]  K. Jabbour,et al.  Effect on physiochemical assets of Dy added spinel ZnSm2O4 for energy storage applications , 2023, Ceramics International.

[10]  M. Najam-ul-Haq,et al.  Facile synthesis of the SnTe/SnSe binary nanocomposite via a hydrothermal route for flexible solid-state supercapacitors. , 2023, RSC advances.

[11]  K. Jabbour,et al.  Iron doped Gd2Zr2O7 hierarchical nanoflakes arrays as robust electrodes materials for energy storage application , 2023, Journal of Energy Storage.

[12]  S. Manzoor,et al.  Partial sulfur doping induced variation in morphology of MnFe_2O_4 with enhanced electrochemical performance for energy storage devices , 2023, Korean Journal of Chemical Engineering.

[13]  A. Al‐Sehemi,et al.  CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system , 2023, Journal of the Korean Ceramic Society.

[14]  Huaiguo Xue,et al.  MOF derived metal oxide composites and their applications in energy storage , 2023, Coordination Chemistry Reviews.

[15]  Ahmed M. Shawky,et al.  Facile fabrication of CuO/Ag2Se nanosized composite via hydrothermal approach for the electrochemical energy conversion system , 2022, Journal of Energy Storage.

[16]  Ahmed M. Shawky,et al.  Ag2Se/SnTe nanorod as potential candidate for energy conversion system developed via hydrothermal route , 2022, Ceramics International.

[17]  M. Tahir,et al.  Rational design of novel dysprosium manganite sandwich layered morphology for supercapacitor applications , 2022, Chinese Journal of Physics.

[18]  R. Yuvakkumar,et al.  Construction of bimetallic ZnSe–CoSe2 flower as a finely tuned electrode for enhancing supercapacitor performance , 2022, International Journal of Energy Research.

[19]  R. Saeed,et al.  Enhancement of the structural, optical and thermoelectric properties of thermally evaporated AgMoO3 thin film by post-annealing , 2022, Optical Materials.

[20]  P. S. Patil,et al.  Review on Recent Advancements in Chemically Synthesized Manganese Cobalt Oxide (MnCo2O4) and Its Composites for Energy Storage Application , 2022, Chemical Engineering Journal.

[21]  Xiaohong Tan,et al.  Bimetallic MOF-derived ZnSe/NiSe heterostructures toward enhanced hydrogen evolution reactions , 2022, Inorganic Chemistry Communications.

[22]  Dong Wang,et al.  One-step synthesis of 2D vertically-aligned hybrid CuSe@NiSe nanosheets for high performance flexible supercapacitors , 2022, Journal of Alloys and Compounds.

[23]  D. Velauthapillai,et al.  Recent Progression of Flower Like ZnSe@MoSe2 Designed as an Electrocatalyst for Enhanced Supercapacitor Performance , 2022, Topics in Catalysis.

[24]  M. S. Onses,et al.  Outstanding Supercapacitor Performance With Intertwined Flower-Like NiO/MnO2/CNT Electrodes , 2022, Materials Research Bulletin.

[25]  Ambika Sharma,et al.  Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials , 2021, Journal of Energy Storage.

[26]  M. S. Onses,et al.  Effects of carbon nanomaterials and MXene addition on the performance of nitrogen doped MnO2 based supercapacitors , 2021, Ceramics International.

[27]  J. Lian,et al.  P- N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applications , 2021 .

[28]  M. Ashiq,et al.  Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue , 2021, Applied Nanoscience.

[29]  D. Velauthapillai,et al.  Hydrothermal Synthesis of Flower Like MnSe2@MoSe2 Electrode for Supercapacitor Applications , 2021, Topics in Catalysis.

[30]  Jinghui Zeng,et al.  High photocatalytic and photoelectrochemical performances of the CuSe/MoSe2 2D/2D face-to-face heterojunction photocatalyst , 2021, Journal of Alloys and Compounds.

[31]  Xiaohong Sun,et al.  ZnSe nanoparticles combined with uniform 3D interconnected MWCNTs conductive network as high-rate and freeze-resistant anode materials for sodium-ion batteries , 2021 .

[32]  Xin Zheng,et al.  Tunable ZnO/NiO heterojunction interface for supercapacitors electrodes by piezoelectric modulation , 2021 .

[33]  Qiang Zhao,et al.  Coelectrodeposition of NiSe/ZnSe Hybrid Nanostructures as a Battery-Type Electrode for an Asymmetric Supercapacitor , 2020 .

[34]  J. Shallenberger,et al.  Zinc selenide analyzed by XPS , 2020, Surface Science Spectra.

[35]  P. Prabakaran,et al.  Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices , 2020 .

[36]  Y. Liu,et al.  In-situ growth of interconnected NiS2/MoS2 nanowires supported on Ni foam as binder-free electrode for hybrid supercapacitor , 2020 .

[37]  Mingheng Li,et al.  Hydrothermal Synthesis of Nanomaterials , 2020, Journal of Nanomaterials.

[38]  G. Shen,et al.  Recent Advances of 2D Nanomaterials for electrochemical capacitors. , 2020, ChemSusChem.

[39]  Linyu Pu,et al.  Construction of hierarchical cobalt-molybdenum selenide hollow nanospheres architectures for high performance battery-supercapacitor hybrid devices. , 2019, Journal of colloid and interface science.

[40]  Hao He,et al.  An asymmetric supercapacitor using sandwich-like NiS/NiTe/Ni positive electrode exhibits a super-long cycle life exceeding 200 000 cycles , 2019, Journal of Power Sources.

[41]  A. Moholkar,et al.  A facile synthesis of α-Ni(OH)2-CNT composite films for supercapacitor application , 2019, Advanced Powder Technology.

[42]  Inho Cho,et al.  Selenium vacancies enriched the performance of supercapacitors with excellent cycling stability via a simple chemical bath deposition method. , 2019, Dalton transactions.

[43]  Yanglong Hou,et al.  Hierarchically Porous Fe2CoSe4 Binary‐Metal Selenide for Extraordinary Rate Performance and Durable Anode of Sodium‐Ion Batteries , 2018, Advanced materials.

[44]  J. Lian,et al.  CuS/MnS composite hexagonal nanosheet clusters: Synthesis and enhanced pseudocapacitive properties , 2018 .

[45]  Jihuai Wu,et al.  Construction of NiTe/NiSe Composites on Ni Foam for High‐Performance Asymmetric Supercapacitor , 2018 .

[46]  Chundong Wang,et al.  Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors , 2017 .

[47]  Shaohua Wu,et al.  Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials , 2016 .

[48]  Huaiguo Xue,et al.  Vanadium based materials as electrode materials for high performance supercapacitors , 2016 .

[49]  Chongyin Yang,et al.  Niobium Nitride Nb4N5 as a New High‐Performance Electrode Material for Supercapacitors , 2015, Advanced science.

[50]  Afriyanti Sumboja,et al.  Flexible and Highly Scalable V2O5‐rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices , 2014 .

[51]  A. Manivannan,et al.  A reduced graphene oxide/Co3O4 composite for supercapacitor electrode , 2013 .

[52]  K. A. Yates,et al.  Superconducting property and Fe valence state of FeSe thick films grown from high temperature solution , 2011 .

[53]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[54]  Z. Fu,et al.  Lithium electrochemistry of NiSe2: A new kind of storage energy material , 2006 .

[55]  N. Yanagi,et al.  Stability measurements of LTS/HTS hybrid superconductors , 2006 .

[56]  Marina Mastragostino,et al.  Conducting polymers as electrode materials in supercapacitors , 2002 .

[57]  Faisal Nawaz,et al.  Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles , 2019, Journal of Materials Research and Technology.

[58]  K. Murali,et al.  Pulse electrodeposited zinc selenide films and their characteristics , 2009 .