Animating non-humanoid characters with human motion data

This paper presents a method for generating animations of non-humanoid characters from human motion capture data. Characters considered in this work have proportion and/or topology significantly different from humans, but are expected to convey expressions and emotions through body language that are understandable to human viewers. Keyframing is most commonly used to animate such characters. Our method provides an alternative for animating non-humanoid characters that leverages motion data from a human subject performing in the style of the target character. The method consists of a statistical mapping function learned from a small set of corresponding key poses, and a physics-based optimization process to improve the physical realism. We demonstrate our approach on three characters and a variety of motions with emotional expressions.

[1]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[2]  Victor B. Zordan,et al.  Momentum control for balance , 2009, SIGGRAPH 2009.

[3]  David A. Forsyth,et al.  Knowing when to put your foot down , 2006, I3D '06.

[4]  Shotaro Akaho,et al.  A kernel method for canonical correlation analysis , 2006, ArXiv.

[5]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[6]  Kwang-Jin Choi,et al.  Online motion retargetting , 2000, Comput. Animat. Virtual Worlds.

[7]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[8]  Kwang-Jin Choi,et al.  Online motion retargetting , 2000, Comput. Animat. Virtual Worlds.

[9]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Human Pose Estimation , 2007, MLMI.

[10]  Jovan Popović,et al.  Semantic deformation transfer , 2009, SIGGRAPH 2009.

[11]  J. Loehlin Latent variable models , 1987 .

[12]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[13]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.

[14]  Chris Hecker,et al.  Real-time motion retargeting to highly varied user-created morphologies , 2008, ACM Trans. Graph..

[15]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[16]  Okan Arikan Compression of motion capture databases , 2006, SIGGRAPH 2006.

[17]  Okan Arikan Compression of motion capture databases , 2006, ACM Trans. Graph..

[18]  Rajesh P. N. Rao,et al.  Learning Shared Latent Structure for Image Synthesis and Robotic Imitation , 2005, NIPS.

[19]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[20]  Christoph Bregler,et al.  Turning to the masters: motion capturing cartoons , 2002, ACM Trans. Graph..

[21]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[22]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[23]  Sung Yong Shin,et al.  A hierarchical approach to interactive motion editing for human-like figures , 1999, SIGGRAPH.

[24]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[25]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[26]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[27]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[28]  Neil D. Lawrence,et al.  Ambiguity Modeling in Latent Spaces , 2008, MLMI.

[29]  David J. Fleet,et al.  Topologically-constrained latent variable models , 2008, ICML '08.

[30]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[31]  Chris Hecker,et al.  Real-time motion retargeting to highly varied user-created morphologies , 2008, SIGGRAPH 2008.