Modeling the Hubble Space Telescope Ultraviolet and Optical Spectrum of Spot 1 on the Circumstellar Ring of SN 1987A

We report and interpret Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) long-slit observations of the optical and ultraviolet (1150-10270 Å) emission line spectra of the rapidly brightening spot 1 on the equatorial ring of SN 1987A between 1997 September and 1999 October (days 3869-4606 after outburst). The emission is caused by radiative shocks created where the supernova blast wave strikes dense gas protruding inward from the equatorial ring. We measure and tabulate line identifications, fluxes, and, in some cases, line widths and shifts. We compute flux correction factors to account for substantial interstellar line absorption of several emission lines. Nebular analysis shows that optical emission lines come from a region of cool (Te ≈ 104 K) and dense (ne ≈ 106 cm-3) gas in the compressed photoionized layer behind the radiative shock. The observed line widths indicate that only shocks with shock velocities Vs < 250 km s-1 have become radiative, while line ratios indicate that much of the emission must have come from yet slower (Vs ≲ 135 km s-1) shocks. Such slow shocks can be present only if the protrusion has atomic density n ≳ 3 × 104 cm-3, somewhat higher than that of the circumstellar ring. We are able to fit the UV fluxes with an idealized radiative shock model consisting of two shocks (Vs = 135 and 250 km s-1). The observed UV flux increase with time can be explained by the increase in shock surface areas as the blast wave overtakes more of the protrusion. The observed flux ratios of optical to highly ionized UV lines are greater by a factor of ~2-3 than predictions from the radiative shock models, and we discuss the possible causes. We also present models for the observed Hα line widths and profiles, which suggest that a chaotic flow exists in the photoionized regions of these shocks. We discuss what can be learned with future observations of all the spots present on the equatorial ring.

[1]  D. Burrows,et al.  Monitoring the Evolution of the X-Ray Remnant of SN 1987A , 2001, astro-ph/0111116.

[2]  J. Reynolds,et al.  Evolution of the Radio Remnant of SN 1987A: 1990-2001 , 2001, Publications of the Astronomical Society of Australia.

[3]  S. Jha,et al.  Analysis of Type IIn SN 1998S: Effects of Circumstellar Interaction on Observed Spectra , 2000, astro-ph/0010615.

[4]  S. Jha,et al.  Preliminary Spectral Analysis of the Type II Supernova 1999em , 2000, astro-ph/0010614.

[5]  G. Sonneborn,et al.  Physical Conditions in Circumstellar Gas Surrounding SN 1987A 12 Years after Outburst , 2000, astro-ph/0009403.

[6]  John A. Nousek,et al.  The X-Ray Remnant of SN 1987A , 2000, astro-ph/0009265.

[7]  A. Crotts,et al.  On the Emergence and Discovery of Hot Spots in SNR 1987A , 2000, astro-ph/0004191.

[8]  R. Kirshner,et al.  Young Stellar Populations around SN 1987A , 2000, astro-ph/0001476.

[9]  K. Nomoto,et al.  Radiation Hydrodynamics of SN 1987A. I. Global Analysis of the Light Curve for the First 4 Months , 1999, astro-ph/9911205.

[10]  A. Crotts,et al.  SN 1987A’s Circumstellar Envelope. II. Kinematics of the Three Rings and the Diffuse Nebula , 1999, astro-ph/9907367.

[11]  D. York,et al.  Interstellar Abundances in the Magellanic Clouds. II. The Line of Sight to SN 1987A in the Large Magellanic Cloud , 1999 .

[12]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[13]  P. Lundqvist Flash Ionization of the Partially Ionized Wind of the Progenitor of SN 1987A , 1998, astro-ph/9807264.

[14]  R. McCray,et al.  High-Velocity Lyα Emission from SNR 1987A , 1998 .

[15]  H. W. Moos,et al.  Spatially Resolved STIS Spectroscopy of SN 1987A: Evidence for Shock Interaction with Circumstellar Gas , 1997, astro-ph/9710373.

[16]  R. Kirshner,et al.  Hubble Space Telescope Spectrum of SN 1987A at an Age of 8 Years: Radioactive Luminescence of Cool Gas , 1997 .

[17]  R. McCray,et al.  X-Ray and Ultraviolet Line Emission from SNR 1987A , 1997 .

[18]  J. Reynolds,et al.  The Asymmetric Radio Remnant of SN 1987A , 1996, astro-ph/9612234.

[19]  R. Kirshner,et al.  The Evolution of Ultraviolet Emission Lines From Circumstellar Material Surrounding SN 1987A , 1996, astro-ph/9610021.

[20]  R. Kirshner,et al.  Properties of Star 2, One of the SN 1987A Companions, Derived from Hubble Space Telescope--Faint Object Spectrograph Observations , 1996 .

[21]  R. Kirshner,et al.  Hubble Space Telescope Spectroscopic Observations of the Ejecta of SN 1987A at 2000 Days , 1996, astro-ph/9602157.

[22]  C. Fransson,et al.  The Line Emission from the Circumstellar Gas around SN 1987A , 1995, astro-ph/9512025.

[23]  J. Holtzman,et al.  Hubble space telescope observations of the SN 1987A triple ring nebula , 1995 .

[24]  V. Dwarkadas,et al.  The Presupernova H II Region around SN 1987A , 1995 .

[25]  J. Blondin,et al.  Numerical Analysis of the Dynamic Stability of Radiative Shocks , 1995 .

[26]  R. Kirshner,et al.  Ultraviolet observations of SN 1987A with the IUE satellite , 1995 .

[27]  W. Arnett,et al.  The Origin of the Rings around SN 1987A: an Evaluation of the Interacting-Winds Model , 1995 .

[28]  R. Kirshner,et al.  HST observations of the ring around SN 1987A , 1995 .

[29]  K A Berrington,et al.  Electron impact excitation rates for transitions involving the n = 2 and n = 3 levels of beryllium-like N IV , 1994 .

[30]  Alexander G. G. M. Tielens,et al.  The physics of grain-grain collisions and gas-grain sputtering in interstellar shocks , 1994 .

[31]  R. McCray,et al.  X-Rays from the Impact of SN 1987A with its Circumstellar Ring , 1994 .

[32]  K. Nomoto,et al.  X-RAY ENHANCEMENT OF SN 1987A DUE TO INTERACTION WITH ITS RINGLIKE NEBULA , 1994 .

[33]  J. Hughes,et al.  Detection of X-rays from SN 1987A with ROSAT , 1994 .

[34]  D. S. Briggs,et al.  Structure of the radio remnant of supernova 1987A , 1993, Nature.

[35]  M. Phillips,et al.  SPECTROSCOPY AND PHOTOMETRY OF COMPANION STARS 2 AND 3 TO SUPERNOVA 1987A , 1993 .

[36]  J. Blondin,et al.  Formation of the Circumstellar Shell around SN 1987A , 1993 .

[37]  A. Burrows,et al.  Shock breakout in SN 1987A , 1992 .

[38]  Stephen C. Russell,et al.  Abundances of the heavy elements in the Magellanic Clouds. III - Interpretation of results , 1992 .

[39]  J. Reynolds,et al.  Birth of a radio supernova remnant in supernova 1987A , 1992, Nature.

[40]  R. McCray,et al.  The circumstellar shell of SN 1987A , 1991 .

[41]  C. Barbieri,et al.  First results from the Faint Object Camera - SN 1987A , 1991 .

[42]  K. Long,et al.  The identification of Balmer-dominated filaments in RCW 86 , 1990 .

[43]  N. Walborn,et al.  Observations of Sk-69 deg 203 and the interstellar extinction towards SN 1987A , 1990 .

[44]  A. Walker,et al.  UBVRI CCD PHOTOMETRY OF STARS NEAR SN 1987A , 1990 .

[45]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[46]  R. Kirshner,et al.  Narrow ultraviolet emission lines from SN 1987A - Evidence for CNO processing in the progenitor , 1989 .

[47]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[48]  C. Fransson The Circumstellar Emission from SN 1987A , 1991, Publications of the Astronomical Society of Australia.

[49]  N. Panagia,et al.  An ultraviolet spectral atlas of interstellar lines toward SN 1987A , 1988 .

[50]  K. Papadopoulos,et al.  A mechanism for strong shock electron heating in supernova remnants , 1988 .

[51]  S. Falle,et al.  Dynamical models of radiative shocks. II: Unsteady shocks , 1987 .

[52]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[53]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.

[54]  Edward L. Fitzpatrick,et al.  An average interstellar extinction curve for the Large Magellanic Cloud. , 1986 .

[55]  G. Danielson,et al.  A deep H-alpha image of faint Balmer-line filaments in the northeast Cygnus Loop supernova remnant , 1986 .

[56]  D. Cox,et al.  Preionization-dependent families of radiative shock waves , 1985 .

[57]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[58]  R. Durisen,et al.  A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars] , 1984 .

[59]  J. Imamura,et al.  Linear analysis of an oscillatory instability of radiative shock waves , 1982 .

[60]  M. Seaton,et al.  Interstellar extinction in the UV , 1979 .

[61]  J. Raymond Shock waves in the interstellar medium , 1979 .

[62]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .