Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

Abstract A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach–Neel and Ising–Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented.

[1]  Synthesis and magnetic properties of Mn doped CuO nanowires , 2010 .

[2]  Peng-Fei Li,et al.  Magnetoelastic instability in Ising-like models , 2010 .

[3]  A. Stancu,et al.  Hysteresis characteristics of an analytical vector hysteron , 2011 .

[4]  J. Souletie Hysteresis and after-effects in massive substances. From spin-glasses to the sand hill , 1983 .

[5]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[6]  A. Stancu,et al.  Temperature- and time-dependent Preisach model for a Stoner-Wohlfarth particle system , 1998 .

[7]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[8]  E. Della Torre,et al.  A Preisach model for aftereffect , 1998 .

[9]  Aiyuan Hu,et al.  The magnetic properties of the two-dimensional square lattice mixed-spin anisotropic Heisenberg ferromagnet with a transverse magnetic field , 2011 .

[10]  J. Chen,et al.  Micromagnetic studies on magnetic spectra of submicron ferromagnetic particles with different aspect ratio , 2010 .

[11]  K. Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[12]  Y. Laosiritaworn Monte Carlo Investigation of Grain Size Dependence of Magnetic Properties , 2009, IEEE Transactions on Magnetics.

[13]  A. Stancu,et al.  Analytical vector generalization of the classical Stoner–Wohlfarth hysteron , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  R. Wood Exact Solution for a Stoner–Wohlfarth Particle in an Applied Field and a New Approximation for the Energy Barrier , 2009, IEEE Transactions on Magnetics.

[15]  P. Gaunt Ferromagnetic domain wall pinning by a random array of inhomogeneities , 1983 .

[16]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[17]  A. Stancu,et al.  Analytical ferromagnetic hysterons with various anisotropies , 2011 .

[18]  E. Cardelli,et al.  Implementation of the Preisach-Stoner-Wohlfarth Classical Vector Model , 2010, IEEE Transactions on Magnetics.

[19]  C. A. Viddal,et al.  Interpreting remanence isotherms: a Preisach-based study , 2004 .

[20]  Qingyu Xu,et al.  Magnetic characterization of Bi(Fe1 − xMnx)O3 , 2011 .

[21]  Field dependence of the barrier to magnetization reversal of a Stoner-Wohlfarth particle , 2006 .

[22]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  P. Gaunt Magnetic viscosity and thermal activation energy , 1986 .

[24]  E. Dahlberg,et al.  Modelling the irreversible response of magnetically ordered materials: a Preisach-based approach , 2001 .