Amino Acid Sensing by mTORC1: Intracellular Transporters Mark the Spot

[1]  Gregory A. Wyant,et al.  The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway , 2016, Cell.

[2]  A. Teleman,et al.  Lysosomal recruitment of TSC2 is a universal response to cellular stress , 2016, Nature Communications.

[3]  W. Talbot,et al.  The Rag-Ragulator Complex Regulates Lysosome Function and Phagocytic Flux in Microglia. , 2016, Cell reports.

[4]  T. Noda,et al.  Dynamic relocation of the TORC1–Gtr1/2–Ego1/2/3 complex is regulated by Gtr1 and Gtr2 , 2016, Molecular biology of the cell.

[5]  N. Pavlova,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[6]  R. Jaenisch,et al.  Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity , 2016, eLife.

[7]  D. Sabatini,et al.  Sestrin2 is a leucine sensor for the mTORC1 pathway , 2016, Science.

[8]  M. Hall,et al.  Multiple amino acid sensing inputs to mTORC1 , 2015, Cell Research.

[9]  S. Barrans,et al.  Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma , 2015, Nature Genetics.

[10]  Wei Liu,et al.  Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides , 2015, Scientific Reports.

[11]  S. Sarkar,et al.  Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis , 2015, Amino Acids.

[12]  Huafeng Zhang,et al.  Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression , 2015, Cellular and Molecular Life Sciences.

[13]  A. Harris,et al.  PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer , 2015, Oncogene.

[14]  Xiao-Xing Li,et al.  Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A , 2015, Oncotarget.

[15]  S. Kong,et al.  Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1 , 2015, Journal of Cell Science.

[16]  D. Tuveson,et al.  The Utilization of Extracellular Proteins as Nutrients Is Suppressed by mTORC1 , 2015, Cell.

[17]  Charles C. Kim,et al.  The SLC36 transporter Pathetic is required for extreme dendrite growth in Drosophila sensory neurons , 2015, Genes & Development.

[18]  C. Behrends,et al.  Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9 , 2015, Molecular and Cellular Biology.

[19]  D. Sabatini,et al.  Nutrient-Sensing Mechanisms across Evolution , 2015, Cell.

[20]  Gregory A. Wyant,et al.  Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 , 2015, Science.

[21]  K. Guan,et al.  Differential regulation of mTORC1 by leucine and glutamine , 2015, Science.

[22]  G. Superti-Furga,et al.  SLC38A9 is a component of the lysosomal amino acid-sensing machinery that controls mTORC1 , 2014, Nature.

[23]  Hui-Yun Wang,et al.  Rab1A is an mTORC1 activator and a colorectal oncogene. , 2014, Cancer cell.

[24]  C. Proud,et al.  Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. , 2014, Cellular signalling.

[25]  Florian Rudroff,et al.  Nitrogen Source Activates TOR (Target of Rapamycin) Complex 1 via Glutamine and Independently of Gtr/Rag Proteins* , 2014, The Journal of Biological Chemistry.

[26]  P. Mischel,et al.  mTORC2 in the center of cancer metabolic reprogramming , 2014, Trends in Endocrinology & Metabolism.

[27]  D. Sabatini,et al.  Regulation of mTORC1 by amino acids. , 2014, Trends in cell biology.

[28]  K. Vousden,et al.  Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. , 2014, Cell reports.

[29]  S. Kim,et al.  Loss of TSC2 confers resistance to ceramide and nutrient deprivation , 2014, Oncogene.

[30]  Dudley Lamming,et al.  RagA, but not RagB, is essential for embryonic development and adult mice. , 2014, Developmental cell.

[31]  Sang Gyun Kim,et al.  Rapamycin: one drug, many effects. , 2014, Cell metabolism.

[32]  L. Cantley,et al.  Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome , 2014, Cell.

[33]  A. Teleman,et al.  Regulation of TORC1 in Response to Amino Acid Starvation via Lysosomal Recruitment of TSC2 , 2014, Cell.

[34]  M. Pende,et al.  Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program , 2014, Oncogene.

[35]  M. Gleave,et al.  Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. , 2013, Journal of the National Cancer Institute.

[36]  D. Benjamin,et al.  TSC on the peroxisome controls mTORC1 , 2013, Nature Cell Biology.

[37]  D. Sabatini,et al.  The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. , 2013, Molecular cell.

[38]  R. Folkerth,et al.  A TSC signaling node at the peroxisome regulates mTORC1 and autophagy in response to ROS , 2013, Nature Cell Biology.

[39]  M. Hall Talks about TORCs: recent advancesin target of rapamycin signalling. On mTOR nomenclature. , 2013, Biochemical Society transactions.

[40]  B. Manning,et al.  Signal integration by mTORC1 coordinates nutrient input with biosynthetic output , 2013, Nature Cell Biology.

[41]  M. Fukuda,et al.  Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino‐acid transporter PAT4 , 2013, EMBO reports.

[42]  K. Guan,et al.  Nutrient signaling to mTOR and cell growth. , 2013, Trends in biochemical sciences.

[43]  Matthew Meyerson,et al.  A Tumor Suppressor Complex with GAP Activity for the Rag GTPases That Signal Amino Acid Sufficiency to mTORC1 , 2013, Science.

[44]  U. Sauer,et al.  Quantitative Phosphoproteomics Reveal mTORC1 Activates de Novo Pyrimidine Synthesis , 2013, Science.

[45]  Karen Blyth,et al.  Serine starvation induces stress and p53 dependent metabolic remodeling in cancer cells , 2012, Nature.

[46]  D. Goberdhan,et al.  Proton-Assisted Amino Acid Transporter PAT1 Complexes with Rag GTPases and Activates TORC1 on Late Endosomal and Lysosomal Membranes , 2012, PloS one.

[47]  Sunghoon Kim,et al.  Leucyl-tRNA Synthetase Is an Intracellular Leucine Sensor for the mTORC1-Signaling Pathway , 2012, Cell.

[48]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[49]  Anne E Carpenter,et al.  mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway , 2011, Cell.

[50]  D. Goberdhan Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? , 2010, Current opinion in investigational drugs.

[51]  D. Meredith,et al.  SLC36A4 (hPAT4) Is a High Affinity Amino Acid Transporter When Expressed in Xenopus laevis Oocytes* , 2010, The Journal of Biological Chemistry.

[52]  A. Teleman,et al.  MAP4K3 regulates body size and metabolism in Drosophila. , 2010, Developmental biology.

[53]  D. Goberdhan,et al.  Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation , 2010, Oncogene.

[54]  D. Hailey,et al.  Autophagy termination and lysosome reformation regulated by mTOR , 2010, Nature.

[55]  Karl-Johan Leuchowius,et al.  Proximity ligation assays: a recent addition to the proteomics toolbox , 2010, Expert review of proteomics.

[56]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[57]  Jeffrey P. MacKeigan,et al.  Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy , 2009, Cell.

[58]  T. P. Neufeld,et al.  Regulation of TORC1 by Rag GTPases in nutrient response , 2008, Nature Cell Biology.

[59]  David M. Sabatini,et al.  The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1 , 2008, Science.

[60]  T. P. Neufeld,et al.  The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila , 2008, The Journal of cell biology.

[61]  V. Mieulet,et al.  A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. , 2007, The Biochemical journal.

[62]  F. Natt,et al.  Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  James T. Murray,et al.  hVps34 Is a Nutrient-regulated Lipid Kinase Required for Activation of p70 S6 Kinase* , 2005, Journal of Biological Chemistry.

[64]  E. Cameroni,et al.  The TOR and EGO protein complexes orchestrate microautophagy in yeast. , 2005, Molecular cell.

[65]  D. Meredith,et al.  PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids , 2005, Development.

[66]  E. Hafen,et al.  Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. , 2004, Genes & development.

[67]  J. Montagne,et al.  A Nutrient Sensor Mechanism Controls Drosophila Growth , 2003, Cell.

[68]  D. Goberdhan,et al.  The functions of insulin signaling: size isn't everything, even in Drosophila. , 2003, Differentiation; research in biological diversity.

[69]  C. Proud,et al.  Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. , 2003, The Biochemical journal.

[70]  D. Thwaites,et al.  Structure, tissue expression pattern, and function of the amino acid transporter rat PAT2. , 2003, Biochemical and biophysical research communications.

[71]  N. Kimura,et al.  A possible linkage between AMP‐activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway , 2003, Genes to cells : devoted to molecular & cellular mechanisms.

[72]  K. Inoki,et al.  TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling , 2002, Nature Cell Biology.

[73]  O. Hino,et al.  Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling , 2002, Nature Cell Biology.

[74]  H. Daniel,et al.  Functional Characterization of Two Novel Mammalian Electrogenic Proton-dependent Amino Acid Cotransporters* , 2002, The Journal of Biological Chemistry.

[75]  C. Proud,et al.  Intracellular Sensing of Amino Acids in Xenopus laevis Oocytes Stimulates p70 S6 Kinase in a Target of Rapamycin-dependent Manner* , 2002, The Journal of Biological Chemistry.

[76]  J. Avruch,et al.  Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism* , 1998, The Journal of Biological Chemistry.

[77]  Paul Tempst,et al.  RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs , 1994, Cell.

[78]  J. Heitman,et al.  Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast , 1991, Science.

[79]  Hui-Yun Wang,et al.  Rab1A Is an mTORC1 Activator and a Colorectal Oncogene. , 2016, Cancer cell.

[80]  D. Sabatini,et al.  Sestrin 2 is a leucine sensor for the mTORC 1 pathway , 2016 .

[81]  M. Hall Talks About TORCs: Recent Advances in Target of Rapamycin Signalling , 2013 .

[82]  H. S. Hundal,et al.  SNAT 2 transceptor signalling via mTOR : A role in cell growth and proliferation ? , 2011 .

[83]  H. S. Hundal,et al.  SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? , 2011, Frontiers in bioscience.