Observer design of singular systems (transistor circuits) using the RK–Butcher algorithms
暂无分享,去创建一个
David J. Evans | K. Murugesan | S. Sekar | V. Murugesh | J. Y. Park | D. J. Evans | K. Murugesan | J. Y. Park | V. Murugesh | S. Sekar
[1] David J. Evans. A new 4th order runge-kutta method for initial value problems with error control , 1991, Int. J. Comput. Math..
[2] R. Alexander,et al. Runge-Kutta methods and differential-algebraic systems , 1990 .
[3] David J. Evans,et al. Analysis of different second order systems via runge-kutta method , 1999, Int. J. Comput. Math..
[4] Erwin Fehlberg,et al. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.
[5] David J. Evans,et al. Analysis of non-linear singular system from fluid dynamics using extended runge-kutta methods , 2000, Int. J. Comput. Math..
[6] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[7] Morris Bader. A new technique for the early detection of stiffness in coupled differential equations and application to standard Runge-Kutta algorithms , 1998 .
[8] Morris Bader. A comparative study of new truncation error estimates and intrinsic accuracies of some higher order Runge-Kutta algorithms , 1987, Comput. Chem..
[9] Frank L. Lewis,et al. Geometric design techniques for observers in singular systems , 1990, Autom..
[10] K. Balachandran,et al. Analysis of transistor circuits using the single-term Walsh series technique , 1991 .
[11] D. Paul Dhayabaran,et al. A study of second-order state-space systems of time-invariant and time-varying transistor circuits using the STWS technique , 2002 .
[12] David J. Evans,et al. Analysis of second order multivariate linear system using single term walsh series technique and runge kutta method , 1999, Int. J. Comput. Math..
[13] L. Shampine,et al. Numerical Solution of Ordinary Differential Equations. , 1995 .
[14] David J. Evans,et al. A new fifth order weighted runge kutta formula , 1996, Int. J. Comput. Math..
[15] David J. Evans,et al. Optimal control of singular systems using the rk–butcher algorithm , 2004, Int. J. Comput. Math..
[16] J. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .
[17] K. Murugesan,et al. Numerical solution of an industrial robot arm control problem using the RK-Butcher algorithm , 2004, Int. J. Comput. Appl. Technol..
[18] Single-term Walsh series analysis of linear optimal control systems incorporating observers , 1989 .
[19] David J. Evans,et al. A Fourth Order Embedded Runge-Kutta RKACeM(4,4) Method Based on Arithmetic and Centroidal Means with Error Control , 2002, Int. J. Comput. Math..
[20] J. Butcher. Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .
[21] David J. Evans,et al. A comparison of extended runge-kutta formulae based on variety of means to solve system of ivps , 2001, Int. J. Comput. Math..
[22] David J. Evans,et al. Weighted fifth-order Runge-Kutta formulas for second-order differential equations , 1998, Int. J. Comput. Math..
[23] L. Shampine,et al. Computer solution of ordinary differential equations : the initial value problem , 1975 .