Observer design of singular systems (transistor circuits) using the RK–Butcher algorithms

In this article, the Runge–Kutta (RK)–Butcher algorithm is used to study the observer design of singular systems (transistor circuits) for time-invariant and time-varying cases. The obtained discrete solutions using the RK–Butcher algorithms are compared with STWS-I, STWS-II methods and with the exact solutions of the transistor circuit problems and are found to be very accurate. Stability analysis for the RK–Butcher algorithm is presented. Error graphs for time-invariant and time-varying cases are presented in a graphical form to show the efficiency of this method. This RK–Butcher algorithm can be easily implemented in a digital computer and the solution can be obtained for any length of time for this observer design of transistor circuit problem. On leave from NIT, Tiruchirappalli, India.

[1]  David J. Evans A new 4th order runge-kutta method for initial value problems with error control , 1991, Int. J. Comput. Math..

[2]  R. Alexander,et al.  Runge-Kutta methods and differential-algebraic systems , 1990 .

[3]  David J. Evans,et al.  Analysis of different second order systems via runge-kutta method , 1999, Int. J. Comput. Math..

[4]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[5]  David J. Evans,et al.  Analysis of non-linear singular system from fluid dynamics using extended runge-kutta methods , 2000, Int. J. Comput. Math..

[6]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[7]  Morris Bader A new technique for the early detection of stiffness in coupled differential equations and application to standard Runge-Kutta algorithms , 1998 .

[8]  Morris Bader A comparative study of new truncation error estimates and intrinsic accuracies of some higher order Runge-Kutta algorithms , 1987, Comput. Chem..

[9]  Frank L. Lewis,et al.  Geometric design techniques for observers in singular systems , 1990, Autom..

[10]  K. Balachandran,et al.  Analysis of transistor circuits using the single-term Walsh series technique , 1991 .

[11]  D. Paul Dhayabaran,et al.  A study of second-order state-space systems of time-invariant and time-varying transistor circuits using the STWS technique , 2002 .

[12]  David J. Evans,et al.  Analysis of second order multivariate linear system using single term walsh series technique and runge kutta method , 1999, Int. J. Comput. Math..

[13]  L. Shampine,et al.  Numerical Solution of Ordinary Differential Equations. , 1995 .

[14]  David J. Evans,et al.  A new fifth order weighted runge kutta formula , 1996, Int. J. Comput. Math..

[15]  David J. Evans,et al.  Optimal control of singular systems using the rk–butcher algorithm , 2004, Int. J. Comput. Math..

[16]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[17]  K. Murugesan,et al.  Numerical solution of an industrial robot arm control problem using the RK-Butcher algorithm , 2004, Int. J. Comput. Appl. Technol..

[18]  Single-term Walsh series analysis of linear optimal control systems incorporating observers , 1989 .

[19]  David J. Evans,et al.  A Fourth Order Embedded Runge-Kutta RKACeM(4,4) Method Based on Arithmetic and Centroidal Means with Error Control , 2002, Int. J. Comput. Math..

[20]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[21]  David J. Evans,et al.  A comparison of extended runge-kutta formulae based on variety of means to solve system of ivps , 2001, Int. J. Comput. Math..

[22]  David J. Evans,et al.  Weighted fifth-order Runge-Kutta formulas for second-order differential equations , 1998, Int. J. Comput. Math..

[23]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .