Self-calibration and Euclidean reconstruction using motions of a stereo rig

This paper describes a method to upgrade projective reconstruction to affine and to metric reconstructions using rigid general motions of a stereo rig. We make clear the algebraic relationships between projective reconstruction, the plane at infinity (affine reconstruction), camera calibration, and metric reconstruction. We show that all the computations can be carried out using standard linear resolution methods and that these methods compare favorably with nonlinear optimization, methods in the presence of Gaussian noise. We carry out a theoretical error analysis which quantify the relative importance of the accuracies of projective-to-affine conversion and affine-to-Euclidean conversion. Experiments with with real data are consistent with the theoretical error analysis and with a sensitivity analysis performed with simulated data.

[1]  L. Gool,et al.  Affine reconstruction from perspective image pairs , 1993 .

[2]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  O. Faugeras Strati cation of D vision projective a ne and metric representations , 1995 .

[4]  Olivier D. Faugeras,et al.  From projective to Euclidean reconstruction , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Roger Y. Tsai,et al.  A new technique for fully autonomous and efficient 3D robotics hand/eye calibration , 1988, IEEE Trans. Robotics Autom..

[6]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[7]  O. Faugeras Stratification of three-dimensional vision: projective, affine, and metric representations , 1995 .

[8]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[10]  Rachid Deriche,et al.  Recovering and characterizing image features using an efficient model based approach , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Richard I. Hartley,et al.  Kruppa's Equations Derived from the Fundamental Matrix , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Thierry Viéville,et al.  Canonic Representations for the Geometries of Multiple Projective Views , 1994, ECCV.

[13]  Narendra Ahuja,et al.  Motion and Structure From Two Perspective Views: Algorithms, Error Analysis, and Error Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Richard I. Hartley,et al.  Euclidean Reconstruction from Uncalibrated Views , 1993, Applications of Invariance in Computer Vision.

[15]  Songde Ma,et al.  Two plane camera calibration: a unified model , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Duane C. Brown,et al.  Close-Range Camera Calibration , 1971 .

[17]  John E. W. Mayhew,et al.  Psychophysical and Computational Studies Towards a Theory of Human Stereopsis , 1981, Artif. Intell..

[18]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[19]  O. Faugeras,et al.  On determining the fundamental matrix : analysis of different methods and experimental results , 1993 .

[20]  I. Reid,et al.  Metric calibration of a stereo rig , 1995, Proceedings IEEE Workshop on Representation of Visual Scenes (In Conjunction with ICCV'95).

[21]  A Blake,et al.  3D model recognition from stereoscopic cues , 1991 .

[22]  Richard I. Hartley Self-Calibration from Multiple Views with a Rotating Camera , 1994, ECCV.

[23]  Roger Tsai,et al.  Synopsis of recent progress on camera calibration for 3D machine vision , 1989 .

[24]  O. D. Faugeras,et al.  Camera Self-Calibration: Theory and Experiments , 1992, ECCV.

[25]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[26]  Kenichi Kanatani,et al.  Anatomy of camera calibration using vanishing points , 1991 .

[27]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Harit P. Trivedi Can multiple views make up for lack of camera registration? , 1988, Image Vis. Comput..

[29]  Andrew Zisserman,et al.  Self-Calibration from Image Triplets , 1996, ECCV.

[30]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[31]  Richard I. Hartley,et al.  Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.

[32]  L. Robert Perception stereoscopique de courbes et de surfaces tridimensionnelles. Application a la robotique mobile , 1993 .

[33]  Y. Tsai Roger An Efficient and Accurate Camera Calibration Technique For 3D Machine Vision , 1986, CVPR 1986.

[34]  Roger Y. Tsai,et al.  Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[35]  Quang-Tuan Luong Matrice Fondamentale et Calibration Visuelle sur l''''Environnement - Vers une plus grande autonomie , 1992 .

[36]  Quang-Tuan Luong Matrice fondamentale et autocalibration en vision par ordinateur , 1992 .