Vortex beams with zero orbital angular momentum and non-zero topological charge

Abstract We study the field structure of the vortex beam generated via coherent fiber-array where beamlets are arranged along a circle. Each beamlet is an aperture-bounded Gaussian beam emerging from fiber output with constant phase. The phase shift between neighbor beamlets is the same, and the total phase incursion along the circle is equal to 2πl (l is integer). The total orbital angular momentum of the beam is equal to zero for any propagation distance and arbitrary l. We show that the central part of the far field corresponds to an optical vortex with the orbital angular momentum and the topological charge equal to l (l

[1]  J. P. Woerdman,et al.  Creation and annihilation of phase singularities in a focal field. , 1997, Optics letters.

[2]  Greg Gbur,et al.  Vortex beam propagation through atmospheric turbulence and topological charge conservation. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[4]  Jeremy L O'Brien,et al.  Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters , 2014, Nature Communications.

[5]  Valerii P. Aksenov,et al.  Vortex beam generation based on a fiber array combining and propagation through a turbulent atmosphere , 2016, Optical Engineering + Applications.

[6]  Valerii P. Aksenov,et al.  Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere , 2016 .

[7]  T. Weyrauch,et al.  Adaptive Array of Phase-Locked Fiber Collimators: Analysis and Experimental Demonstration , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Michael V. Berry,et al.  Paraxial beams of spinning light , 1998, Other Conferences.

[9]  Andrew Forbes,et al.  On the resilience of scalar and vector vortex modes in turbulence. , 2016, Optics express.

[10]  C. Paterson,et al.  Atmospheric turbulence and orbital angular momentum of single photons for optical communication. , 2005, Physical review letters.

[11]  P. A. Konyaev,et al.  Computer simulation of optical wave propagation with the use of parallel programming , 2011 .

[12]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[13]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  Valerii P. Aksenov,et al.  Orbital angular momentum of a laser beam in a turbulent medium: preservation of the average value and variance of fluctuations , 2016 .

[15]  Vadim V. Dudorov,et al.  Algorithm for formation of an infinite random turbulent screen , 2006, Atmospheric and Ocean Optics.

[16]  J. R. Morris,et al.  Time-dependent propagation of high energy laser beams through the atmosphere , 1976 .

[17]  Mark R. Dennis,et al.  Singular optics and topological photonics , 2016 .

[18]  Mikhail A. Vorontsov,et al.  Exotic laser beam engineering with coherent fiber-array systems , 2013 .

[19]  Arnaud Brignon,et al.  Coherent Laser Beam Combining , 2013 .

[20]  Shi-Yao Zhu,et al.  Formation of optical vortices using coherent laser beam arrays , 2009 .

[21]  Valerii P. Aksenov,et al.  Characterization of vortex beams synthesized on the basis of a fiber laser array , 2015, Atmospheric and Ocean Optics.

[22]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[23]  Olga Korotkova,et al.  Vortex beams in turbulent media: review , 2016 .

[24]  Valerii P. Aksenov,et al.  Orbital angular momentum of laser beam in the turbulent medium: asymptotic estimates and numerical simulation , 2015, Atmospheric and Ocean Optics.