Hybrid phase-change plasmonic crystals for active tuning of lattice resonances.

Tunable lattice resonances are demonstrated in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm (1.89 µm to 2.27 µm) is achieved experimentally via intermediate phase states of the GST layer. This work demonstrates the efficacy and ease of resonance tuning via GST in the near infrared, suggesting the possibility to design broadband non-volatile tunable devices for optical modulation, switching, sensing and nonlinear optical devices.

[1]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[2]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[3]  S. Maier,et al.  Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. , 2010, Optics letters.

[4]  Noboru Yamada,et al.  Development of Materials for Third Generation Optical Storage Media , 2009 .

[5]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[6]  Masud Mansuripur,et al.  Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films , 2000 .

[7]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[8]  Matthias Wuttig,et al.  Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5 , 1999 .

[9]  Ai Qun Liu,et al.  Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer. , 2011, Optics express.

[10]  Masud Mansuripur,et al.  Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films. , 2011, Optics express.

[11]  Masud Mansuripur,et al.  Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. , 2010, Optics express.

[12]  Kannatassen Appavoo,et al.  Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. , 2012, Nano letters.

[13]  R. Allenspach,et al.  Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode , 2007 .

[14]  P. K. Tan,et al.  Study of the Partial Crystallization Properties of Phase-Change Optical Recording Disks , 1999 .

[15]  Gorden Videen,et al.  Effective medium theories for irregular fluffy structures: aggregation of small particles. , 2007, Applied optics.

[16]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[17]  D. Suh,et al.  Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry , 2008 .

[18]  Richard Dronskowski,et al.  The role of vacancies and local distortions in the design of new phase-change materials. , 2007, Nature materials.

[19]  J. Přikryl,et al.  Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study , 2009 .

[20]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[21]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[22]  J. Gómez Rivas,et al.  Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. , 2009, Physical review letters.

[23]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[24]  Vincenzo Giannini,et al.  Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas , 2009 .

[25]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[26]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[27]  Abul K. Azad,et al.  Active Terahertz Metamaterial Devices , 2008 .

[28]  S. Maier,et al.  Lattice resonances in antenna arrays for liquid sensing in the terahertz regime. , 2011, Optics express.

[29]  C. N. Berglund,et al.  Optical Properties of VO2between 0.25 and 5 eV , 1968 .

[30]  Yonghao Cui,et al.  Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. , 2012, ACS nano.

[31]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[32]  D. Ielmini,et al.  Analytical Modeling of Chalcogenide Crystallization for PCM Data-Retention Extrapolation , 2007, IEEE Transactions on Electron Devices.

[33]  David E. Aspnes,et al.  Local‐field effects and effective‐medium theory: A microscopic perspective , 1982 .

[34]  Chunlei Du,et al.  Ag dots array fabricated using laser interference technique for biosensing , 2008 .

[35]  Noboru Yamada,et al.  Phase-Change Optical Disk Having a Nitride Interface Layer , 1998 .

[36]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.