A quiver approach to studying orbit spaces of linear systems
暂无分享,去创建一个
[1] Uwe Helmke,et al. Towards a compactification of the set of conditioned invariant subspaces , 2003, Syst. Control. Lett..
[2] Gauge theoretical Gromov-Witten invariants and virtual fundamental classes , 2002, math/0301131.
[3] A. Willsky,et al. Boundary-value descriptor systems: well-posedness, reachability and observability , 1987 .
[4] Filtrations, weights and quiver problems , 2012 .
[5] M. Jablonski. Detecting orbits along subvarieties via the moment map , 2008, 0810.5697.
[6] U. Helmke,et al. Topology of the orbit space of generalized linear systems , 1989 .
[7] A. Marian. On the Real Moment Map , 2001 .
[8] M. Bader. Quivers, geometric invariant theory, and moduli of linear dynamical systems , 2007, 0712.0558.
[9] A. Tannenbaum. Invariance and System Theory: Algebraic and Geometric Aspects , 1981 .
[10] Toshiyuki Kobayashi. Restrictions of Unitary Representations of Real Reductive Groups , 2005 .
[11] D. Mumford,et al. Geometric Invariant Theory , 2011 .
[12] M. Brion. Introduction to actions of algebraic groups , 2010 .
[13] G. Kempf,et al. The length of vectors in representation spaces , 1979 .
[14] A. King. MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .
[15] R. Kálmán,et al. On Invariants, Canonical Forms and Moduli for Linear, Constant, Finite Dimensional, Dynamical Systems , 1976 .
[16] A canonical form for controllable singular systems , 1989 .
[17] SYMPLECTIC STABILITY, ANALYTIC STABILITY IN NON-ALGEBRAIC COMPLEX GEOMETRY , 2003, math/0309230.