Classification of Two Genera of 32-Dimensional Lattices of Rank 8 over the Hurwitz Order

A generalization of Kneser's neighboring method allows us to classify two interesting genera at the same time. The new method is used to determine the genus of Hermitian unimodular lattices of rank 8 over the Hurwitz order M and the genus of those M-lattices corresponding to unimodular Z-Iattices.

[1]  Walter Feit,et al.  Some lattices over Q(√−3)☆ , 1978 .

[2]  Gabriele Nebe,et al.  Finite quaternionic matrix groups , 1998 .

[3]  R. Tennant Algebra , 1941, Nature.

[4]  H. Quebbemann Modular Lattices in Euclidean Spaces , 1995 .

[5]  Arjeh M. Cohen,et al.  Finite Quaternionic Reflection Groups , 1980 .

[6]  D. E. Taylor The geometry of the classical groups , 1992 .

[7]  H.-G. Quebbemann An application of Siegel's formula over quaternion orders , 1984 .

[8]  On Brandt matrices associated with the positive definite quaternion Hermitian forms , 1980 .

[9]  Helmut Koch,et al.  Über ganzzahlige unimodulare euklidische Gitter. , 1989 .

[10]  F. M. Saxelby Experimental Mathematics , 1902, Nature.

[11]  Helmut Koch,et al.  Über gerade unimodulare Gitter der Dimension 32, III , 1991 .

[12]  G. Nebe Finite subgroups of GLn(Q) for 25 ≤ n ≤ 31 , 1996 .

[13]  N. J. A. Sloane,et al.  Self-Dual Codes over GF(4) , 1978, J. Comb. Theory, Ser. A.

[14]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[15]  M. Kneser,et al.  Klassenzahlen definiter quadratischer Formen , 1957 .

[16]  Christine Bachoc Voisinage au sens de Kneser pour les réseaux quaternioniens , 1995 .

[17]  Gabriele Nebe,et al.  Extremal Even Unimodular Lattices of Rank 32 and Related Codes , 1993 .

[18]  Wilhelm Plesken,et al.  Computing Isometries of Lattices , 1997, J. Symb. Comput..

[19]  Wilhelm Plesken,et al.  Finite Rational Matrix Groups , 1995 .