Fiber optic current and voltage sensors for electric power transmission systems

Optical current and voltage sensors have become attractive alternatives to conventional instrument transformers in high voltage electric power transmission systems. The optical sensors offer important benefits such as small size and weight, enhanced performance, and constitute an important part of the transition to digital substations. The sensors must comply with stringent accuracy and reliability requirements. Commonly, substation applications demand accuracy to within ±0.2% over outdoor temperature ranges. Other aspects are insensitivity to shock and vibration and stray fields as well as life times in excess of 30 years. We review the technology of the sensors and present particular measures that were necessary to achieve the required performance. This includes the exploration of different sensing fiber types, inherent temperature compensation, accelerated life tests, and, in case of voltage sensors, adequate high voltage proof insulation and packaging. We discuss the integration of a current sensor into a circuit breaker and show results from a corresponding field test.

[1]  Klaus M. Bohnert,et al.  Growth and Characterization of Single Crystalline Bi4Ge3O12 Fibers for Electrooptic High Voltage Sensors , 2013, J. Sensors.

[2]  S. Miyamoto,et al.  Development of Fiber-Optic Voltage Sensors and Magnetic-Field Sensors , 1987, IEEE Transactions on Power Delivery.

[3]  Lin Yang,et al.  Long-term reliability of semiconductor light sources for fiber-optic current sensors , 2014 .

[4]  M. Deeter,et al.  Temperature dependence of the Verdet constant in several diamagnetic glasses. , 1991, Applied optics.

[5]  K. Bohnert,et al.  Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber. , 2016, Optics express.

[6]  K. Bohnert,et al.  Fiber optic voltage sensor for 420 kV electric power systems , 2000 .

[7]  J. Blake,et al.  In-line Sagnac interferometer current sensor , 1995 .

[8]  R Dändliker,et al.  Reciprocal reflection interferometer for a fiber-optic Faraday current sensor. , 1994, Applied optics.

[9]  F. Maystre,et al.  Magneto-optic current sensor using a helical-fiber Fabry-Perot resonator. , 1989, Optics letters.

[10]  W W Lin,et al.  Modified in-line Sagnac interferometer with passive demodulation technique for environmental immunity of a fiber-optic current sensor. , 1999, Applied optics.

[11]  Isao Takagi,et al.  Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear , 1991 .

[12]  K. Bohnert,et al.  Temperature and vibration insensitive fiber-optic current sensor , 2002 .

[13]  Luc Thévenaz,et al.  A Novel All-Fiber Configuration for a Flexible Polarimetric Current Sensor , 2004 .

[14]  K. Bohnert,et al.  Fiber-optic sensing of voltages by line integration of the electric field. , 1989, Optics letters.

[15]  Andrew Michie,et al.  Electric field and voltage sensing using thermally poled silica fibre with a simple low coherence interferometer , 2006 .

[16]  L. Li,et al.  Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation , 1994 .

[17]  K. Bohnert,et al.  Electro-optic voltage sensor based on BGO for air-insulated high voltage substations , 2013, 2013 IEEE Photonics Conference.

[18]  Regina Célia da Silva Barros Allil,et al.  Optical High-Voltage Sensor Based on Fiber Bragg Grating and PZT Piezoelectric Ceramics , 2011, IEEE Transactions on Instrumentation and Measurement.

[19]  G. Day,et al.  Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors , 1991 .

[20]  A A Jaecklin,et al.  Elimination of disturbing birefringence effects on faraday rotation. , 1972, Applied optics.

[21]  Dennis Erickson The Use of Fiber Optics for Communications, Measurement and Control Within High Voltage Substations , 1980, IEEE Transactions on Power Apparatus and Systems.

[22]  T. W. Cease,et al.  A magneto-optic current transducer , 1990 .

[23]  T. Bosselmann,et al.  Temperature compensation in magnetooptic AC current sensors using an intelligent AC-DC signal evaluation , 1995 .

[24]  K. Bohnert,et al.  Optical fiber sensors for the electric power industry , 2005 .

[25]  Kinichi Sasaki,et al.  Temperature-Insensitive Sagnac-Type Optical Current Transformer , 2015, Journal of Lightwave Technology.

[26]  K. Bohnert,et al.  Fiber-optic voltage sensor for SF6 gas-insulated high-voltage switchgear. , 1999, Applied optics.

[27]  P Robert,et al.  Polarization multiplexing applied to a fiber current sensor. , 1989, Optics letters.

[28]  Lihui Wang,et al.  Modeling and simulation of polarization errors in reflective fiber optic current sensor , 2011 .

[29]  G. Day,et al.  Polarization dependence of response functions in 3/spl times/3 Sagnac optical fiber current sensors , 1994 .

[30]  S. X. Short,et al.  Imperfect quarter-waveplate compensation in Sagnac interferometer-type current sensors , 1998 .

[31]  Y. N. Ning,et al.  Faraday effect optical current clamp using a bulk-glass sensing element. , 1993, Optics letters.

[32]  N. C. Pistoni,et al.  Vibration-insensitive fiber-optic current sensor. , 1993, Optics letters.

[33]  Min-Cheol Oh,et al.  Polymer waveguide integrated-optic current transducers. , 2011, Optics express.

[34]  R. Ulrich,et al.  Polarization optics of twisted single-mode fibers. , 1979, Applied optics.

[35]  Grzegorz Fusiek,et al.  Design and evaluation of a preprototype hybrid fiber-optic voltage sensor for a remotely interrogated condition monitoring system , 2005, IEEE Transactions on Instrumentation and Measurement.

[36]  M Lenner,et al.  Fiber-optic current sensor with self-compensation of source wavelength changes. , 2016, Optics letters.

[37]  K. Bohnert,et al.  Fiber-Optic Current Sensor for Electrowinning of Metals , 2007, Journal of Lightwave Technology.

[38]  K S Lee,et al.  Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi(4)Ge(3)O(12)). , 1996, Applied optics.

[39]  A Papp,et al.  Magnetooptical current transformer. 1: Principles. , 1980, Applied optics.

[40]  A. I. Sazonov,et al.  LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Use of Spun optical fibres in current sensors , 2006 .

[41]  T. Sawa,et al.  Development of optical instrument transformers , 1990 .

[42]  J. Blake,et al.  Polarization evolution in bent spun fiber , 2005, Journal of Lightwave Technology.

[43]  K. Kurosawa,et al.  Polarization properties of the flint glass fiber , 1995 .

[44]  P.-A. Nicati,et al.  Stabilised current sensor using Sagnac interferometer , 1988 .

[45]  David N. Payne,et al.  Electric current sensors employing spun highly birefringent optical fibers , 1989 .