Computational Fluid Dynamic Solutions of Optimized Heat Shields Designed for Earth Entry

Abstract : Computational fluid dynamic solutions are obtained for heat shields optimized for aerothermodynamic performance using modified Newtonian impact theory. Aerodynamically, the low-order approach matches all computational simulations within 10%. Benchmark Apollo 4 solutions, at the moment of maximum heating, show that predicted heat fluxes using this approach under-predict convective heat flux by approximately 30% and over-predict radiative heat flux by approximately 16% when compared to computational results. Parametric edge radius studies display a power law reliance of convective heat flux on local edge radius of curvature. A slender, oblate heat shield optimized for a single design point is shown to produce heat fluxes that are 1.8 times what was predicted using the Newtonian approach. For this design, maximum heat flux decreases with the inverse cube of the base cross section sharpness. Uncoupled radiative heat flux results based on CFD solutions for a slender heat shield show that the lower-order approach under-predicts the heating from the radiating shock layer by 70%, suggesting the infeasibility of empirical relations used to predict radiative heat ux for eccentric blunt-body heat shields. Coupled vehicle/trajectory optimized designs are examined for both lunar return (11 km/s) and Mars return (12.5 km/s) and show possible discrepancies for eccentric cross sections using low-order semi-empirical correlations. Ultimately gains suggested by the lower order approach using more complex geometries are not reflected in these high- fidelity simulations. In some respects (especially with regards to the heating environment), the simpler shape (i.e. a 25 spherical segment) is the ideal one.

[1]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[2]  Graham V. Candler,et al.  The solution of the Navier-Stokes equations using Gauss-Seidel line relaxation , 1989 .

[3]  Chul Park,et al.  Stagnation-Point Radiation for Apollo 4 , 2004 .

[4]  E. R. Hillje Entry aerodynamics at lunar return conditions obtained from the flight of Apollo 4 /AS-501/ , 1969 .

[5]  J. D. Ramshaw,et al.  Elements Of Computational Fluid Dynamics , 2011 .

[6]  R. Stevenson,et al.  Program to Optimize Simulated Trajectories (POST). Volume 2: Utilization manual , 1975 .

[7]  Chul Park,et al.  Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen , 1986 .

[8]  Joshua Elijah Johnson MULTIDISCIPLINARY OPTIMIZATION OF NON-SPHERICAL, BLUNT-BODY HEAT SHIELDS FOR A PLANETARY ENTRY VEHICLE , 2006 .

[9]  James O. Arnold,et al.  NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual , 1996 .

[10]  G. Candler,et al.  Data-Parallel Line Relaxation Method for the Navier -Stokes Equations , 1998 .

[11]  Gene P. Menees,et al.  Aerothermodynamics of transatmospheric vehicles , 1986 .

[12]  P. D. Thomas,et al.  Direct Control of the Grid Point Distribution in Meshes Generated by Elliptic Equations , 1980 .

[13]  R. E. Smith,et al.  Trajectory optimization for an Apollo-type vehicle under entry conditions encountered during lunar return , 1967 .

[14]  Chul Park,et al.  Stagnation-Point Radiation for Apollo 4 - A Review and Current Status , 2001 .

[15]  W. C. Moseley,et al.  Stability Characteristics of the Apollo Command Module , 1967 .

[16]  Mark Loomis,et al.  Aerothermal analysis of the Project Fire II afterbody flow , 2001 .

[17]  Joshua E. Johnson,et al.  Analysis of Optimal Earth Entry Heat Shield/ Trajectory Configurations , 2008 .

[18]  David Saunders,et al.  An Approach to Shock Envelope Grid Tailoring and Its Effect on Reentry Vehicle Solutions , 2007 .

[19]  D. Bose,et al.  Analysis and Model Validation of Shock Layer Radiation in Air , 2008 .

[20]  R. S. Crowder,et al.  Apollo entry aerodynamics. , 1969 .

[21]  Frank J. Regan Re-entry vehicle dynamics , 1984 .

[22]  J. E. Pavlosky,et al.  Apollo experience report: Thermal protection subsystem , 1974 .

[23]  R. L. Sorenson,et al.  Numerical generation of two-dimensional grids by the use of Poisson equations with grid control at boundaries , 1980 .

[24]  J. C. Tannehill,et al.  Improved curve fits for the thermodynamic properties of equilibrium air suitable for numerical computation using time-dependent or shock-capturing methods, part 1 , 1974 .

[25]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[26]  C. D. Scott,et al.  Thermophysical Aspects of Re-Entry Flows , 1986 .

[27]  M. E. Tauber,et al.  Stagnation-point radiative heating relations for earth and Mars entries , 1991 .

[28]  Joshua E. Johnson Aerothermodynamic Optimization of Earth Entry Blunt Body Heat Shields for Lunar and Mars Return , 2009 .

[29]  R. Maccormack Current status of numerical solutions of the Navier-Stokes equations , 1985 .

[30]  Richard A. Thompson,et al.  A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K , 1989 .

[31]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[32]  G. E. Kaattari A method for predicting shock shapes and pressure distributions for a wide variety of blunt bodies at zero angle of attack , 1968 .

[33]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[34]  W. D. Goodrich,et al.  The aerothermodynamic environment of the Apollo command module during superorbital entry , 1972 .

[35]  J. Gielis A generic geometric transformation that unifies a wide range of natural and abstract shapes. , 2003, American journal of botany.

[36]  Ryan P. Starkey,et al.  Aerothermodynamic Optimization of Reentry Heat Shield Shapes for a Crew Exploration Vehicle , 2007 .

[37]  Ryan P. Starkey,et al.  Effects of Hypersonic Cruise Trajectory Optimization Coupled with Airbreathing Vehicle Design , 2006 .

[38]  R. C. Ried,et al.  Radiative heating to the Apollo command module: Engineering prediction and flight measurement , 1972 .

[39]  N. H. Johannesen,et al.  Hypersonic Flow , 1967, Nature.

[40]  Ryan P. Starkey,et al.  Entry Heat Shield Optimization for Mars Return , 2009 .

[41]  U. M. Lovelace Charts Depicting Kinematic and Heating Parameters for a Ballistic Reentry at Speeds of 26,000 to 45,000 Feet Per Second , 1961 .

[42]  Graham V. Candler,et al.  Comparison of coupled radiative flow solutions with Project Fire II flight data , 1995 .

[43]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[44]  Joshua E. Johnson,et al.  Coupled Entry Heat Shield/Trajectory Optimization for Lunar Return , 2008 .

[45]  Dinesh K. Prabhu,et al.  Analysis of Apollo Command Module Afterbody Heating Part I: AS-202 , 2006 .

[46]  John D. Ramshaw,et al.  Self-Consistent Effective Binary Diffusion in Multicomponent Gas Mixtures , 1990 .

[47]  D. Curry,et al.  Apollo ablator thermal performance at superorbital entry velocities , 1970 .

[48]  F. R. Riddell,et al.  Theory of Stagnation Point Heat Transfer in Dissociated Air , 1958 .

[49]  Graham V. Candler,et al.  Predicting failure of the continuum fluid equations in transitional hypersonic flows , 1994 .

[50]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[51]  P. Gnoffo An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows , 1990 .

[52]  Richard M. Stallman,et al.  Using the GNU Compiler Collection , 2010 .

[53]  A. Balakrishnan,et al.  Radiative viscous-shock-layer analysis of Fire, Apollo, and PAET flight data , 1985 .

[54]  J. Anderson,et al.  Hypersonic and High-Temperature Gas Dynamics, Third Edition , 2006 .

[55]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .