A Multidomain PSTD Method for 3D Elastic Wave Equations

A 3D multidomain pseudospectral time-domain method is developed for elastic wave equations. The method is based on the spectral derivative operator approximated by Chebyshev or Lagrange polynomials. Unlike the Fourier method that assumes periodic boundary conditions, the Chebyshev pseudospectral method allows for the incorporation of various boundary conditions (such as the free surface boundary condition) into the numerical scheme. In this multidomain scheme, the computational domain is decomposed into a set of subdomains conformal to the problem geometry. Each curved subdomain is then mapped onto a cube in the curvilinear coordinates so that a tensor-product Chebyshev grid can be utilized without the staircasing error. An unsplit-field perfectly matched layer is developed as the absorbing boundary condition. Numerical examples show that this scheme is efficient for simulating elastic waves phenomena in the presence of complex objects. The method is found to be significantly more efficient than the finite-difference time-domain method in terms of memory and run-time requirements.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[2]  Qing Huo Liu,et al.  The 2.5-D multidomain pseudospectral time-domain algorithm , 2003 .

[3]  Jan S. Hesthaven,et al.  Multidomain pseudospectral computation of Maxwell's equations in 3-D general curvilinear coordinates , 2000 .

[4]  Qing Huo Liu,et al.  Perfectly matched layers for elastic waves in cylindrical and spherical coordinates , 1999 .

[5]  Qing Huo Liu,et al.  Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  Jan S. Hesthaven,et al.  A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution , 1999 .

[7]  Qing Huo Liu,et al.  The PSTD algorithm: A time-domain method requiring only two cells per wavelength , 1997 .

[8]  D. Kosloff,et al.  Solution of the equations of dynamic elasticity by a Chebychev spectral method , 1990 .

[9]  Gang Zhao,et al.  MULTIDOMAIN PSEUDOSPECTRAL TIME-DOMAIN (PSTD) METHOD FOR ACOUSTIC WAVES IN LOSSY MEDIA , 2004 .

[10]  Qing Huo Liu,et al.  The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media. , 1998, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[11]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[12]  Q.H. Liu,et al.  The 3-D multidomain pseudospectral time-domain method for wideband simulation , 2003, IEEE Microwave and Wireless Components Letters.

[13]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[14]  Qing Huo Liu,et al.  A three‐dimensional finite difference simulation of sonic logging , 1996 .

[15]  Jan S. Hesthaven,et al.  Spectral Simulations of Electromagnetic Wave Scattering , 1997 .

[16]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[17]  Qing Huo Liu,et al.  Compressional head waves in attenuative formations: Forward modeling and inversion , 1996 .

[18]  Qing Huo Liu,et al.  Multidomain pseudospectral time-domain simulations of scattering by objects buried in lossy media , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  Qing Huo Liu,et al.  AN FDTD ALGORITHM WITH PERFECTLY MATCHED LAYERS FOR CONDUCTIVE MEDIA , 1997 .

[20]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[21]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[22]  Jan S. Hesthaven,et al.  Regular Article: Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements , 1999 .

[23]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[24]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .