Visual analysis of online social media to open up the investigation of stance phenomena

Online social media are a perfect text source for stance analysis. Stance in human communication is concerned with speaker attitudes, beliefs, feelings and opinions. Expressions of stance are associated with the speakers' view of what they are talking about and what is up for discussion and negotiation in the intersubjective exchange. Taking stance is thus crucial for the social construction of meaning. Increased knowledge of stance can be useful for many application fields such as business intelligence, security analytics, or social media monitoring. In order to process large amounts of text data for stance analyses, linguists need interactive tools to explore the textual sources as well as the processed data based on computational linguistics techniques. Both original texts and derived data are important for refining the analyses iteratively. In this work, we present a visual analytics tool for online social media text data that can be used to open up the investigation of stance phenomena. Our approach complements traditional linguistic analysis techniques and is based on the analysis of utterances associated with two stance categories: sentiment and certainty. Our contributions include (1) the description of a novel web-based solution for analyzing the use and patterns of stance meanings and expressions in human communication over time; and (2) specialized techniques used for visualizing analysis provenance and corpus overview/navigation. We demonstrate our approach by means of text media on a highly controversial scandal with regard to expressions of anger and provide an expert review from linguists who have been using our tool.

[1]  Saif Mohammad,et al.  Portable Features for Classifying Emotional Text , 2012, NAACL.

[2]  Jean-Daniel Fekete,et al.  Compus: visualization and analysis of structured documents for understanding social life in the 16th century , 2000, DL '00.

[3]  Andreas Kerren,et al.  Toward the role of interaction in Visual Analytics , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[4]  Michelle L. Gregory,et al.  User-directed Sentiment Analysis: Visualizing the Affective Content of Documents , 2006 .

[5]  Ebad Banissi,et al.  Knowledge Visualization Currents: From Text to Art to Culture , 2012 .

[6]  Christopher D. Manning,et al.  Baselines and Bigrams: Simple, Good Sentiment and Topic Classification , 2012, ACL.

[7]  Ronald Rousseau,et al.  Similarity measures in scientometric research: The Jaccard index versus Salton's cosine formula , 1989, Inf. Process. Manag..

[8]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[9]  Andreas Kerren,et al.  Visual analysis of stance markers in online social media , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[10]  Yingcai Wu,et al.  Visual Analysis of Topic Competition on Social Media , 2013, IEEE Transactions on Visualization and Computer Graphics.

[11]  Linda Becker,et al.  Visualizing the text of Philip Pullman's trilogy "His Dark Materials" , 2010, NordiCHI.

[12]  John W. Du Bois The stance triangle , 2007 .

[13]  Amy X. Zhang,et al.  Identifying and Analyzing Moral Evaluation Frames in Climate Change Blog Discourse , 2014, ICWSM.

[14]  S. Hunston,et al.  Evaluation in Text: Authorial Stance and the Construction of Discourse , 2001 .

[15]  Julio Gonzalo,et al.  Overview of RepLab 2013: Evaluating Online Reputation Monitoring Systems , 2013, CLEF.

[16]  Ondrej Sýkora,et al.  Crossing Minimisation Heuristics for 2-page Drawings , 2005, Electron. Notes Discret. Math..

[17]  Robert S. Laramee,et al.  ShakerVis: Visual analysis of segment variation of German translations of Shakespeare’s Othello , 2015, Inf. Vis..

[18]  Daniel A. Keim,et al.  Real-Time Visual Analytics for Text Streams , 2013, Computer.

[19]  Erik Velldal,et al.  Predicting speculation: a simple disambiguation approach to hedge detection in biomedical literature , 2011, J. Biomed. Semant..

[20]  Michael Gleicher,et al.  Exploring Collections of Tagged Text for Literary Scholarship , 2011, Comput. Graph. Forum.

[21]  Tara Black,et al.  The language of evaluation , 2017 .

[22]  Carita Paradis Meanings of words : theory and application , 2015 .

[23]  Daniel A. Keim,et al.  State-of-the-Art Report of Visual Analysis for Event Detection in Text Data Streams , 2014, EuroVis.

[24]  Andreas Kerren,et al.  WebComets: A Tab-Oriented Approach for Browser History Visualization , 2013, GRAPP/IVAPP.

[25]  Giuseppe Carenini,et al.  ConVis: A Visual Text Analytic System for Exploring Blog Conversations , 2014, Comput. Graph. Forum.

[26]  Lan Wang,et al.  Sentiment Classification of Documents Based on Latent Semantic Analysis , 2011 .

[27]  Daniel A. Keim,et al.  Lexical Semantics and Distribution of Suffixes - A Visual Analysis , 2012, EACL 2012.

[28]  Daniel A. Keim,et al.  Visual Sentiment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008 , 2009 .

[29]  Steven Skiena,et al.  Watch the Story Unfold with TextWheel: Visualization of Large-Scale News Streams , 2012, TIST.

[30]  Daniel A. Keim,et al.  Visual sentiment analysis of customer feedback streams using geo-temporal term associations , 2013, Inf. Vis..

[31]  Ulrik Brandes,et al.  Visual unrolling of network evolution and the analysis of dynamic discourse , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[32]  Daniel A. Keim,et al.  Feature-Based Visual Sentiment Analysis of Text Document Streams , 2012, TIST.

[33]  Yuhua Liu,et al.  Time-space varying visual analysis of micro-blog sentiment , 2013, VINCI '13.

[34]  Roy T. Fielding,et al.  Principled design of the modern Web architecture , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[35]  D. Biber,et al.  Styles of stance in English: Lexical and grammatical marking of evidentiality and affect , 1989 .

[36]  R CBalabantaray,et al.  Multi-Class Twitter Emotion Classification: A New Approach , 2012 .

[37]  Marco Büchler,et al.  Visualizations for Text Re-use , 2015, 2014 International Conference on Information Visualization Theory and Applications (IVAPP).

[38]  Andreas Kerren,et al.  Hedges and Tweets : Certainty and Uncertainty in Epistemic Markers in Microblog Feeds , 2014 .

[39]  Janet Wiles,et al.  Conceptual Recurrence Plots: Revealing Patterns in Human Discourse , 2012, IEEE Transactions on Visualization and Computer Graphics.

[40]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[41]  Martin Wattenberg,et al.  ManyEyes: a Site for Visualization at Internet Scale , 2007, IEEE Transactions on Visualization and Computer Graphics.

[42]  Blesson Varghese,et al.  The royal birth of 2013: Analysing and visualising public sentiment in the UK using Twitter , 2013, 2013 IEEE International Conference on Big Data.

[43]  Maria Cristina Ferreira de Oliveira,et al.  Seeing beyond reading: a survey on visual text analytics , 2012, WIREs Data Mining Knowl. Discov..

[44]  Robert Englebretson Stancetaking in discourse : An introduction , 2007 .

[45]  A. Jaffe Stance: Sociolinguistic Perspectives , 2009 .

[46]  Aoying Zhou,et al.  SentiView: Sentiment Analysis and Visualization for Internet Popular Topics , 2013, IEEE Transactions on Human-Machine Systems.

[47]  Benno Stein,et al.  Information Access Evaluation. Multilinguality, Multimodality, and Visualization , 2013, Lecture Notes in Computer Science.

[48]  Tobias Schreck,et al.  Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter , 2012 .

[49]  Ata Kabán,et al.  A Dynamic Probabilistic Model to Visualise Topic Evolution in Text Streams , 2002, Journal of Intelligent Information Systems.

[50]  John T. Stasko,et al.  Combining Computational Analyses and Interactive Visualization for Document Exploration and Sensemaking in Jigsaw , 2013, IEEE Transactions on Visualization and Computer Graphics.

[51]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[52]  Yulan He,et al.  Sentence Subjectivity Detection with Weakly-Supervised Learning , 2011, IJCNLP.

[53]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[54]  Douglas Biber,et al.  Stance in spoken and written university registers , 2006 .

[55]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[56]  Peter Gärdenfors,et al.  Semantics, conceptual spaces, and the meeting of minds , 2013, Synthese.

[57]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[58]  Martin Wattenberg,et al.  Arc diagrams: visualizing structure in strings , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[59]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[60]  Evangelos E. Milios,et al.  Context-specific sentiment lexicon expansion via minimal user interaction , 2015, 2014 International Conference on Information Visualization Theory and Applications (IVAPP).

[61]  John Nerbonne,et al.  Proceedings of the 4th International Conference on Language Resources and Evaluation , 2004 .

[62]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[63]  Edwin de Jonge,et al.  Tree Colors: Color Schemes for Tree-Structured Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[64]  Christian Rössl,et al.  Sets of Globally Optimal Stream Surfaces for Flow Visualization , 2014, Comput. Graph. Forum.

[65]  P. Ekman An argument for basic emotions , 1992 .

[66]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[67]  Yulan He,et al.  A Bayesian modeling approach to multi-dimensional sentiment distributions prediction , 2012, WISDOM '12.

[68]  Baoyao Zhou,et al.  Document visualization: an overview of current research , 2014 .

[69]  William Ribarsky,et al.  HierarchicalTopics: Visually Exploring Large Text Collections Using Topic Hierarchies , 2013, IEEE Transactions on Visualization and Computer Graphics.

[70]  Harri Siirtola,et al.  Text Variation Explorer: Towards interactive visualization tools for corpus linguistics , 2014 .

[71]  Fei Wang,et al.  PEARL: An interactive visual analytic tool for understanding personal emotion style derived from social media , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[72]  Thomas Ertl,et al.  ScatterBlogs2: Real-Time Monitoring of Microblog Messages through User-Guided Filtering , 2013, IEEE Transactions on Visualization and Computer Graphics.

[73]  Andreas Kerren,et al.  Text Visualization Browser : A Visual Survey of Text Visualization Techniques , 2014 .

[74]  Andreas Kerren,et al.  From culture to text to interactive visualization of wine reviews , 2013 .

[75]  Daniel A. Keim,et al.  Visual opinion analysis of customer feedback data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[76]  Zhiying Xin,et al.  Stancetaking in Discourse: Subjectivity, Evaluation, Interaction , 2008 .

[77]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[78]  Danqi Chen,et al.  of the Association for Computational Linguistics: , 2001 .

[79]  Michael Strube,et al.  Finding Hedges by Chasing Weasels: Hedge Detection Using Wikipedia Tags and Shallow Linguistic Features , 2009, ACL.

[80]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[81]  Ming Zhou,et al.  Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification , 2014, ACL.

[82]  Angelika Fruehauf,et al.  Evaluation In Text Authorial Stance And The Construction Of Discourse , 2016 .