Local electronic structure analysis by site-selective ELNES using electron channeling and first-principles calculations

In this paper, we review our recent analyses of electron energy loss near edge structure (ELNES) of particular crystalline sites, exploiting dynamical electron diffraction effects, or electron channeling, whereby the excitation weights of the Bloch waves propagating in a crystal can be controlled systematically by adjusting the diffraction conditions. A state-of-the-art data processing technique, multivariate curve resolution (MCR), can restore purely site-specific spectral profiles and their compositions from the experimental data set. Another technique, the Pixon deconvolution method, effectively removes the statistical noise, which enables us to compare the spectral fine structures with those calculated by first principles and discuss the site-specific local atomic and electronic structures. We demonstrate typical case studies in model materials and then an advanced chemical state analysis in a real material. Finally, some remarks toward further refinement of the method are made.

[1]  Kazuo Ishizuka,et al.  The study of Al-L23 ELNES with resolution-enhancement software and first-principles calculation. , 2003, Journal of electron microscopy.

[2]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[3]  Isao Tanaka,et al.  Site-specific electronic structure analysis by channeling EELS and first-principles calculations. , 2006, Ultramicroscopy.

[4]  Yukinori Koyama,et al.  First-principles multi-electron calculations for L(2,3) ELNES/XANES of 3d transition metal monoxides. , 2006, Ultramicroscopy.

[5]  B. Boucher,et al.  Proprietes et structure magnetique de Mn3O4 , 1971 .

[6]  I. Tanaka,et al.  XANES and ELNES in Ceramic Science , 2005 .

[7]  Shunsuke Muto,et al.  Site-Selective Electronic Structure of Aluminum in Oxide Ceramics Obtained by TEM-EELS Analysis Using the Electron Standing-Wave Method , 2007 .

[8]  H. Saka,et al.  Ce2Zr2O7 と β-Ce2Zr2O7.5 の結晶構造 , 2004 .

[9]  S. Muto,et al.  Energy-drift correction of electron energy-loss spectra from prolonged data accumulation of low SNR signals. , 2008, Journal of Electron Microscopy.

[10]  M. Nelhiebel,et al.  Diffraction effects in inner‐shell ionization edges , 1996 .

[11]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[12]  Guo,et al.  Resonant X-Ray Fluorescence Spectroscopy of Correlated Systems: A Probe of Charge-Transfer Excitations. , 1996, Physical review letters.

[13]  W. Ching Theoretical Studies of the Electronic Properties of Ceramic Materials , 1990 .

[14]  C. Colliex,et al.  Improving energy resolution of EELS spectra: an alternative to the monochromator solution. , 2003, Ultramicroscopy.

[15]  Tsuyoshi Sasaki,et al.  Novel valence state of cerium in Ce2Zr2O7.5 elucidated by electron energy-loss spectroscopy under electron channeling conditions , 2005 .

[16]  O. V. Nielsen,et al.  The magnetic structure of Mn3O4 Hausmannite between 4.7K and Neel point, 41K , 1974 .

[17]  正洽 杉浦,et al.  Ce2Zr2O7+xにおける酸素の吸収挙動とCe2Zr2O7.5相の生成 , 2003 .

[18]  Y. Koyama,et al.  Relativistic cluster calculation of ligand-field multiplet effects on cation L-2,L-3 x-ray-absorption edges of SrTiO3, NiO, and CaF2 , 2001 .

[19]  W. J. Orville-Thomas Atoms in Molecules — a Quantum Theory , 1996 .

[20]  P. Schattschneider Fundamentals of inelastic electron scattering , 1986 .

[21]  P. Hopke,et al.  Application of modified alternating least squares regression to spectroscopic image analysis , 2003 .

[22]  Isao Tanaka,et al.  Effects of Breit interaction on the L-2,L-3 x-ray absorption near-edge structures of 3d transition metals , 2008 .

[23]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[26]  J. Taftø,et al.  Site-Specific Valence Determination by Electron Energy-Loss Spectroscopy , 1982 .

[27]  R. Puetter,et al.  Spectral restoration and energy resolution improvement of electron energy-loss spectra by Pixon reconstruction: II. Application to practical ELNES analysis of low SNR. , 2006, Journal of electron microscopy.

[28]  H. Rose,et al.  Theory of image formation by inelastically scattered electrons in the electron microscope , 1985 .

[29]  R. Puetter,et al.  Spectral restoration and energy resolution improvement of electron energy-loss spectra by Pixon reconstruction: I. Principle and test examples. , 2006, Journal of electron microscopy.

[30]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[31]  Okada,et al.  Theory of x-ray-absorption spectra in PrO2 and some other rare-earth compounds. , 1991, Physical review. B, Condensed matter.

[32]  A. Howie,et al.  Electron Microscopy of Thin Crystals , 1977, Nature.

[33]  M. S. Hegde,et al.  Oxygen-release/storage properties of Ce0.5M0.5O2 (M = Zr, Hf) oxides: interplay of crystal chemistry and electronic structure. , 2007, The journal of physical chemistry. B.

[34]  P. Buseck,et al.  Low-energy limit to channelling effects in the inelastic scattering of fast electrons , 1983 .

[35]  M. Raudsepp,et al.  Structural variation in nickel aluminate spinel (NiAl2O4) , 1992 .

[36]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[37]  B. Kowalski,et al.  Multivariate curve resolution applied to spectral data from multiple runs of an industrial process , 1993 .

[38]  W. Ching,et al.  Ab initio calculation of the core-hole effect in the electron energy-loss near-edge structure , 2000 .