Hopping parameters for tunnel coupling in 2D materials

[1]  V. Osipov,et al.  Review Article: Tunneling-based graphene electronics: Methods and examples , 2017 .

[2]  T. Frauenheim,et al.  The spectral adjustment in nanoscale transport combined with the density functional based tight binding method , 2017 .

[3]  V. Osipov,et al.  Effect of edge vacancies on performance of planar graphene tunnel field-effect transistor , 2017, 1707.00933.

[4]  I. Iorsh,et al.  2-dimensional hyperbolic medium for electrons and photons based on the array of tunnel-coupled graphene nanoribbons , 2015, 1504.02130.

[5]  V. Osipov,et al.  DNA sequencing through graphene nanogap: a model of sequential electron transport , 2014 .

[6]  I. Appelbaum,et al.  Electrons and holes in phosphorene , 2014, 1408.0770.

[7]  Phaedon Avouris,et al.  Origin of photoresponse in black phosphorus phototransistors , 2014, 1407.7286.

[8]  Zhenhua Ni,et al.  Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization , 2014, Nano Research.

[9]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[10]  V. Osipov,et al.  Graphene-based tunnel junction , 2014 .

[11]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[12]  A. Jauho,et al.  Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene. , 2014, Physical review letters.

[13]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[14]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[15]  V. Osipov,et al.  Planar graphene tunnel field-effect transistor , 2013, 1310.6951.

[16]  Lyuben Zhechkov,et al.  DFTB Parameters for the Periodic Table: Part 1, Electronic Structure. , 2013, Journal of chemical theory and computation.

[17]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[18]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[19]  T. Giamarchi,et al.  Tunneling conductance and local density of states in tight-binding junctions , 2011, 1102.3895.

[20]  Hanna Enriquez,et al.  Epitaxial growth of a silicene sheet , 2010, 1204.0523.

[21]  Laurence G. D. Hawke,et al.  Electronic parameters for charge transfer along DNA , 2009, The European physical journal. E, Soft matter.

[22]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[23]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[24]  Jean-Christophe Charlier,et al.  Scanning tunneling microscopy fingerprints of point defects in graphene : A theoretical prediction , 2007 .

[25]  J. B. Adams,et al.  Electronic structure and bonding in hexagonal boron nitride , 2006 .

[26]  B. Dunlap,et al.  Slater's Exchange Parameters α for Analytic and Variational Xα Calculations. , 2005, Journal of chemical theory and computation.

[27]  J. Soler,et al.  Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. , 2004, Physical review letters.

[28]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[29]  Adam S. Foster,et al.  Theories of scanning probe microscopes at the atomic scale , 2003 .

[30]  P. Lambin,et al.  Tight-Binding Computation of the STM Image of Carbon Nanotubes , 1998 .

[31]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[32]  J. Mathon TIGHT-BINDING THEORY OF TUNNELING GIANT MAGNETORESISTANCE , 1997 .

[33]  Gerd Karl Binnig,et al.  Scanning Tunneling Microscopy , 1996 .

[34]  March,et al.  Tight-binding theory of tunneling current with chemisorbed species. , 1988, Physical review. B, Condensed matter.

[35]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[36]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[37]  K. Schwarz Optimized statistical exchange parameters α for atoms with higherZ , 1974 .

[38]  K. Schwarz Optimization of the Statistical Exchange Parameter α for the Free Atoms H through Nb , 1972 .

[39]  J. Bardeen Tunnelling from a Many-Particle Point of View , 1961 .

[40]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[41]  P. Wallace The Band Theory of Graphite , 1947 .

[42]  Z. Alferov,et al.  The history and future of semiconductor heterostructures , 1998 .

[43]  J. C. Slater Statistical Exchange-Correlation in the Self-Consistent Field , 1972 .