Key roles for transforming growth factor beta in melanocyte stem cell maintenance.

[1]  X. Yang,et al.  Disruption of Smad4 in mouse epidermis leads to depletion of follicle stem cells. , 2008, Molecular biology of the cell.

[2]  G. Sumara,et al.  Brain area-specific effect of TGF-beta signaling on Wnt-dependent neural stem cell expansion. , 2008, Cell stem cell.

[3]  Anne-Marie Alleaume,et al.  TRP-2 specifically decreases WM35 cell sensitivity to oxidative stress. , 2008, Free radical biology & medicine.

[4]  E. Fuchs,et al.  Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. , 2007, Cancer cell.

[5]  A. Iwama,et al.  Cytokine Signaling, Lipid Raft Clustering, and HSC Hibernation , 2007, Annals of the New York Academy of Sciences.

[6]  C. Deng,et al.  Smad4 is critical for self-renewal of hematopoietic stem cells , 2007, The Journal of experimental medicine.

[7]  A. Spradling,et al.  Breaking out of the mold: diversity within adult stem cells and their niches. , 2006, Current opinion in genetics & development.

[8]  D. Pinkel,et al.  Somatic activation of KIT in distinct subtypes of melanoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  D. Fisher,et al.  MITF: master regulator of melanocyte development and melanoma oncogene. , 2006, Trends in molecular medicine.

[10]  L. Chin,et al.  Malignant melanoma: genetics and therapeutics in the genomic era. , 2006, Genes & development.

[11]  G. Cotsarelis Epithelial stem cells: a folliculocentric view. , 2006, The Journal of investigative dermatology.

[12]  D. Scadden,et al.  The stem-cell niche as an entity of action , 2006, Nature.

[13]  J. Massagué,et al.  The logic of TGFβ signaling , 2006 .

[14]  C. Deng,et al.  Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin , 2006, Oncogene.

[15]  Linheng Li,et al.  Stem cell niche: structure and function. , 2005, Annual review of cell and developmental biology.

[16]  Ji-shuai Zhang,et al.  Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. , 2005, Cancer research.

[17]  T. Suda,et al.  Hematopoietic stem cells and their niche. , 2005, Trends in immunology.

[18]  D. Moscatelli,et al.  TGF-β maintains dormancy of prostatic stem cells in the proximal region of ducts , 2005, The Journal of cell biology.

[19]  J. Epstein,et al.  Pax3 functions at a nodal point in melanocyte stem cell differentiation , 2005, Nature.

[20]  D. Fisher,et al.  Mechanisms of Hair Graying: Incomplete Melanocyte Stem Cell Maintenance in the Niche , 2005, Science.

[21]  N. Copeland,et al.  Melanocytes and the microphthalmia transcription factor network. , 2004, Annual review of genetics.

[22]  Kyoung-Chan Park,et al.  Transforming growth factor-beta1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. , 2004, The international journal of biochemistry & cell biology.

[23]  Keith W. Vance,et al.  The transcription network regulating melanocyte development and melanoma. , 2004, Pigment cell research.

[24]  Friedrich Beermann,et al.  Melanocytes and Pigmentation Are Affected in Dopachrome Tautomerase Knockout Mice , 2004, Molecular and Cellular Biology.

[25]  E. Fuchs,et al.  Defining the Epithelial Stem Cell Niche in Skin , 2004, Science.

[26]  B. Pak,et al.  Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase , 2004, Oncogene.

[27]  M. Goumans,et al.  TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. , 2003, Blood.

[28]  L. Raftery,et al.  Profile of Transforming Growth Factor-β Responses During the Murine Hair Cycle , 2003 .

[29]  L. Larue,et al.  SP-14 Cre-mediated recombination in the skin melanocyte lineage , 2003 .

[30]  S. Ledbetter,et al.  Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. , 2003, Journal of the American Society of Nephrology : JASN.

[31]  E. Bruckheimer,et al.  bcl‐2 antagonizes the combined apoptotic effect of transforming growth factor‐β and dihydrotestosterone in prostate cancer cells , 2002, The Prostate.

[32]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[33]  Sridhar Ramaswamy,et al.  Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability , 2002, Cell.

[34]  S. Nishikawa,et al.  Dominant role of the niche in melanocyte stem-cell fate determination , 2002, Nature.

[35]  J. Roes,et al.  TGF-β Receptor Controls B Cell Responsiveness and Induction of IgA In Vivo , 2000 .

[36]  G. Dotto,et al.  Control of murine hair follicle regression (catagen) by TGF‐β1 in vivo , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  R. Buscà,et al.  Cyclic AMP a key messenger in the regulation of skin pigmentation. , 2000, Pigment cell research.

[38]  F M Watt,et al.  Out of Eden: stem cells and their niches. , 2000, Science.

[39]  N. Fortunel,et al.  TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. , 2000, Journal of cell science.

[40]  B. Pak,et al.  Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications , 2000, Oncogene.

[41]  S. Nishikawa,et al.  Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. , 1999, Developmental biology.

[42]  R Paus,et al.  A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. , 1999, The Journal of investigative dermatology.

[43]  A. Chakraborty,et al.  Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. , 1999, Melanoma research.

[44]  C. Chou,et al.  Bcl-2 Blocks Apoptotic Signal of Transforming Growth Factor-β in Human Hepatoma Cells , 1998, Journal of Biomedical Science.

[45]  I. Jackson,et al.  Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. , 1997, Developmental biology.

[46]  G. Barsh,et al.  Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to alpha-melanotropin. , 1997, The Journal of investigative dermatology.

[47]  T. Sun,et al.  Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis , 1990, Cell.

[48]  L. J. Veer,et al.  N-ras mutations in human cutaneous melanoma from sun-exposed body sites , 1989, Molecular and cellular biology.

[49]  J. Dasch,et al.  Monoclonal antibodies recognizing transforming growth factor-beta. Bioactivity neutralization and transforming growth factor beta 2 affinity purification. , 1989, Journal of immunology.

[50]  猪又 顕 Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation , 2009 .

[51]  K. Miyazono,et al.  Roles of TGF-β family signaling in stem cell renewal and differentiation , 2009, Cell Research.

[52]  J. Massagué,et al.  The logic of TGFbeta signaling. , 2006, FEBS letters.

[53]  L. Raftery,et al.  Profile of transforming growth factor-beta responses during the murine hair cycle. , 2003, The Journal of investigative dermatology.

[54]  J. Massagué,et al.  Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. , 2003, Nature reviews. Cancer.

[55]  J. Roes,et al.  TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. , 2000, Immunity.

[56]  西岡 恵里 Expression of tyrosinase, TRP-1 and TRP-2 in ultravioletirradiated human melanomas and melanocytes : TRP-2 protects melanoma cells from ultraviolet B induced apoptosis , 2000 .

[57]  Rodney F. Boyer,et al.  Modern Experimental Biochemistry , 1993 .