A large deformation, rotation-free, isogeometric shell

Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner–Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using C0 basis functions are possible, they are complicated in comparison to their C1 counterparts. A Ck-continuous, k ⩾ 1, NURBS-based isogeometric shell for large deformations formulated without rotational degrees of freedom is presented here. The effect of different choices for defining the shell normal vector is demonstrated using a simple eigenvalue problem, and a simple lifting operator is shown to provide the most accurate solution. Higher order elements are commonly regarded as inefficient for large deformation analyses, but a traditional shell benchmark problem demonstrates the contrary for isogeometric analysis. The rapid convergence of the quadratic element is demonstrated for the NUMISHEET S-rail benchmark metal stamping problem.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[3]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[4]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[5]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[6]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[7]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[8]  V. Rich Personal communication , 1989, Nature.

[9]  Long Chen FINITE ELEMENT METHOD , 2013 .

[10]  L. Morino,et al.  An Improved Numerical Calculation Technique for Large Elastic-Plastic Transient Deformations of Thin Shells: Part 2—Evaluation and Applications , 1971 .

[11]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[12]  David J. Benson,et al.  Stable time step estimation for multi-material Eulerian hydrocodes , 1998 .

[13]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[14]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[15]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[16]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[17]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[18]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[19]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[20]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[21]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[23]  Scott E. Schoenfeld,et al.  Quickly convergent integration methods for plane stress plasticity , 1993 .

[24]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[25]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[26]  I. Miranda,et al.  Implicit-Explicit Finite Elements in Nonlinear Transient Analysis , 1979 .

[27]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[28]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[29]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[30]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[31]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[32]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[33]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[34]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[35]  Jerry I. Lin,et al.  Explicit algorithms for the nonlinear dynamics of shells , 1984 .

[36]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .