VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data

Urban data is massive, heterogeneous, and spatio-temporal, posing a substantial challenge for visualization and analysis. In this paper, we design and implement a novel visual analytics approach, Visual Analyzer for Urban Data (VAUD), that supports the visualization, querying, and exploration of urban data. Our approach allows for cross-domain correlation from multiple data sources by leveraging spatial-temporal and social inter-connectedness features. Through our approach, the analyst is able to select, filter, aggregate across multiple data sources and extract information that would be hidden to a single data subset. To illustrate the effectiveness of our approach, we provide case studies on a real urban dataset that contains the cyber-, physical-, and social- information of 14 million citizens over 22 days.

[1]  Li Fei-Fei,et al.  Reasoning about Object Affordances in a Knowledge Base Representation , 2014, ECCV.

[2]  Thomas Ertl,et al.  VESPa: A Pattern-based Visual Query Language for Event Sequences , 2016, VISIGRAPP.

[3]  Menno-Jan Kraak,et al.  New views on multivariable spatio - temporal data : the space time cube expanded , 2005 .

[4]  Bart Kuijpers,et al.  Trajectory Databases: Data Models, Uncertainty and Complete Query Languages , 2007, ICDT.

[5]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[6]  Eugene S. Ferguson,et al.  Engineering and the Mind's Eye , 1994 .

[7]  Hujun Bao,et al.  Adaptively Exploring Population Mobility Patterns in Flow Visualization , 2017, IEEE Transactions on Intelligent Transportation Systems.

[8]  Tina Eliassi-Rad,et al.  Visual Analysis of Large Heterogeneous Social Networks by Semantic and Structural Abstraction , 2006 .

[9]  Richard T. Snodgrass,et al.  Spatiotemporal aggregate computation: a survey , 2005, IEEE Transactions on Knowledge and Data Engineering.

[10]  Xiaoru Yuan,et al.  Visual Traffic Jam Analysis Based on Trajectory Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[11]  Hujun Bao,et al.  A visual reasoning approach for data-driven transport assessment on urban roads , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[12]  Kwan-Liu Ma,et al.  Visual Recommendations for Network Navigation , 2011, Comput. Graph. Forum.

[13]  Liuqing Yang,et al.  Big Data for Social Transportation , 2016, IEEE Transactions on Intelligent Transportation Systems.

[14]  Gennady L. Andrienko,et al.  Exploratory spatio-temporal visualization: an analytical review , 2003, J. Vis. Lang. Comput..

[15]  Shashi Shekhar,et al.  Data models in geographic information systems , 1997, CACM.

[16]  Ralf Hartmut Güting,et al.  Group spatiotemporal pattern queries , 2014, GeoInformatica.

[17]  D. Peuquet It's About Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems , 1994 .

[18]  Chris Weaver,et al.  Visual Analysis of Higher-Order Conjunctive Relationships in Multidimensional Data Using a Hypergraph Query System , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  Diansheng Guo,et al.  Origin-Destination Flow Data Smoothing and Mapping , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Carlos Eduardo Scheidegger,et al.  Nanocubes for Real-Time Exploration of Spatiotemporal Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[21]  Christophe Hurter,et al.  Scalable Analysis of Movement Data for Extracting and Exploring Significant Places , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Marie-Laure Mugnier,et al.  Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs , 2008, Advanced Information and Knowledge Processing.

[23]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[24]  Melanie Tory,et al.  Supporting Communication and Coordination in Collaborative Sensemaking , 2014, IEEE Transactions on Visualization and Computer Graphics.

[25]  Wei Zeng,et al.  Visualizing Mobility of Public Transportation System , 2014, IEEE Transactions on Visualization and Computer Graphics.

[26]  Ben Shneiderman,et al.  Dynamic queries for visual information seeking , 1994, IEEE Software.

[27]  Jing Ma,et al.  Visual Analysis of Public Utility Service Problems in a Metropolis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[28]  Xiaoru Yuan,et al.  Visual Exploration of Sparse Traffic Trajectory Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[29]  Jean-Daniel Fekete,et al.  Managing Data for Visual Analytics: Opportunities and Challenges , 2012, IEEE Data Eng. Bull..

[30]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[31]  Cláudio T. Silva,et al.  Using Topological Analysis to Support Event-Guided Exploration in Urban Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[32]  Licia Capra,et al.  Urban Computing: Concepts, Methodologies, and Applications , 2014, TIST.

[33]  Fei Wang,et al.  Mobility Viewer: An Eulerian Approach for Studying Urban Crowd Flow , 2016, IEEE Transactions on Intelligent Transportation Systems.

[34]  Heidrun Schumann,et al.  Stacking-Based Visualization of Trajectory Attribute Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[35]  William Wright,et al.  GeoTime Information Visualization , 2004, IEEE Symposium on Information Visualization.

[36]  Jie Tang,et al.  Learning to Infer Social Ties in Large Networks , 2011, ECML/PKDD.

[37]  J. Lee,et al.  Recent Advances and Trends of Cyber-Physical Systems and Big Data Analytics in Industrial Informatics , 2014 .

[38]  Emanuel Zgraggen,et al.  (s|qu)eries: Visual Regular Expressions for Querying and Exploring Event Sequences , 2015, CHI.

[39]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[40]  Bart Kuijpers,et al.  Trajectory databases: Data models, uncertainty and complete query languages , 2007, J. Comput. Syst. Sci..

[41]  Patrick Weber,et al.  OpenStreetMap: User-Generated Street Maps , 2008, IEEE Pervasive Computing.

[42]  Gennady L. Andrienko,et al.  Visual analytics of movement: An overview of methods, tools and procedures , 2013, Inf. Vis..

[43]  Jing Yang,et al.  SemanticTraj: A New Approach to Interacting with Massive Taxi Trajectories , 2017, IEEE Transactions on Visualization and Computer Graphics.

[44]  Heng Tao Shen,et al.  Searching trajectories by locations: an efficiency study , 2010, SIGMOD Conference.

[45]  Donna Peuquet,et al.  A conceptual framework for incorporating cognitive principles into geographical database representation , 2000, Int. J. Geogr. Inf. Sci..

[46]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[47]  Fei-Yue Wang,et al.  A Survey of Traffic Data Visualization , 2015, IEEE Transactions on Intelligent Transportation Systems.

[48]  Alexei A. Efros,et al.  City Forensics: Using Visual Elements to Predict Non-Visual City Attributes , 2014, IEEE Transactions on Visualization and Computer Graphics.