Integrity Constraints in Spatial Databases

INTRODUCTION A number of integrity constraints must be observed when updating a database, to preserve the semantics and the quality of stored data (Elmasri & Navathe, 2000). Achieving and preserving the integrity of data is an established field in the database area. However, within the scope of geographic applications, special problems come up due to the locational aspects of data (Plumber & Groger, 1997). Most geographical information systems (GIS) use data that depend on topological relationships, and sometimes these data must be explicitly represented in the database, requiring special attention for the maintenance of the semantic integrity. Enforcing the integrity constraints must be considered one of the main implementation goals (Borges et al., 1999). Thus, it is convenient to explicitly specify on the geographic application schema the situations where the constraints cannot be disregarded. Many mistakes in the data entry process could be avoided if digitizing processes based on these constraints were implemented.

[1]  Juliano Lopes de Oliveira,et al.  An Environment for Modeling and Design of Geographic Applications , 1997, GeoInformatica.

[2]  Alberto H. F. Laender,et al.  OMT-G: An Object-Oriented Data Model for Geographic Applications , 2001, GeoInformatica.

[3]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[4]  Alberto H. F. Laender,et al.  Spatial data integrity constraints in object oriented geographic data modeling , 1999, GIS '99.

[5]  Frederico T. Fonseca,et al.  Ontology-driven geographic information systems , 1999, GIS '99.

[6]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[7]  Eliseo Clementini,et al.  A Small Set of Formal Topological Relationships Suitable for End-User Interaction , 1993, SSD.

[8]  Sophie Cockcroft A Taxonomy of Spatial Data Integrity Constraints , 1997, GeoInformatica.

[9]  Lutz Plümer,et al.  Achieving Integrity in Geographic Information Systems—Maps and Nested Maps , 1997, GeoInformatica.

[10]  Andrew U. Frank,et al.  Two Perspectives on Geographical Data Modelling (90-11) , 1990 .

[11]  Alberto H. F. Laender,et al.  A Semantic Comparison of the Modelling Capabilities of the ER and NIAM Models , 1993, ER.

[12]  William E. Lorensen,et al.  Object-Oriented Modeling and Design , 1991, TOOLS.

[13]  Avraham Margalit,et al.  An algorithm for computing the union, intersection or difference of two polygons , 1989, Comput. Graph..

[14]  Alberto H. F. Laender,et al.  Multiple representations in GIS: materialization through map generalization, geometric, and spatial analysis operations , 1999, GIS '99.

[15]  Dimitris Papadias,et al.  Spatial Relations, Minimum Bounding Rectangles, and Spatial Data Structures , 1997, Int. J. Geogr. Inf. Sci..

[16]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[17]  Ramez Elmasri,et al.  Fundamentals of Database Systems, 2nd Edition , 1994 .

[18]  Michael F. Goodchild,et al.  Geographical data modeling , 1992 .

[19]  Donna J. Peuquet,et al.  A Conceptual Framework and Comparison of Spatial Data Models , 1984 .

[20]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[21]  Andrew U. Frank,et al.  NCGIA National Center for Geographic Information and Analysis Two Perspectives on Geographical Data Modelling , 1990 .

[22]  Michael F. Worboys,et al.  A Unified Model for Spatial and Temporal Information , 1994, Comput. J..

[23]  M. Egenhofer Evaluating Inconsistencies Among Multiple Representations , 2000 .

[24]  Robert Laurini,et al.  Information Systems for Urban Planning , 1992 .

[25]  Georg Kösters,et al.  GIS-Application Development with GeoOOA , 1997, Int. J. Geogr. Inf. Sci..

[26]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[27]  Derek Thompson,et al.  Fundamentals of spatial information systems , 1992, A.P.I.C. series.