The backrub motion: how protein backbone shrugs when a sidechain dances.

[1]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[2]  R. Levy,et al.  Protein dynamics and NMR relaxation: comparison of simulations with experiment , 1982, Nature.

[3]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[4]  M. Sporn,et al.  Transforming Growth Factor‐β , 1990 .

[5]  J. Richardson,et al.  Corrections: Amino Acid Preferences for Specific Locations at the Ends of α Helices , 1988 .

[6]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[7]  W. Lim,et al.  Alternative packing arrangements in the hydrophobic core of λrepresser , 1989, Nature.

[8]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[9]  D C Richardson,et al.  Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992. , 1992, Biophysical journal.

[10]  B. Matthews,et al.  The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. , 1994, Science.

[11]  Lynne Regan,et al.  Redesigning the hydrophobic core of a four‐helix‐bundle protein , 1994, Protein science : a publication of the Protein Society.

[12]  J R Desjarlais,et al.  De novo design of the hydrophobic cores of proteins , 1995, Protein science : a publication of the Protein Society.

[13]  B. Matthews,et al.  Studies on protein stability with T4 lysozyme. , 1995, Advances in protein chemistry.

[14]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[15]  G T Montelione,et al.  Crankshaft motions of the polypeptide backbone in molecular dynamics simulations of human type-α transforming growth factor , 1995, Journal of biomolecular NMR.

[16]  B. Matthews,et al.  A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Kalbitzer,et al.  Protein NMR Spectroscopy. Principles and Practice , 1997 .

[18]  S. L. Mayo,et al.  De novo protein design: fully automated sequence selection. , 1997, Science.

[19]  B. Erman,et al.  Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations. , 1997, Biochemistry.

[20]  G J Kleywegt,et al.  Experimental assessment of differences between related protein crystal structures. , 1999, Acta crystallographica. Section D, Biological crystallography.

[21]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[22]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[23]  D. Eisenberg,et al.  Centrosymmetric bilayers in the 0.75 å resolution structure of a designed alpha‐helical peptide, D, L‐Alpha‐1 , 1999, Protein science : a publication of the Protein Society.

[24]  L. Vitagliano,et al.  The ultrahigh resolution crystal structure of ribonuclease A containing an isoaspartyl residue: hydration and sterochemical analysis. , 2000, Journal of molecular biology.

[25]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[26]  V Lamzin,et al.  Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[28]  D. Richardson,et al.  Exploring steric constraints on protein mutations using MAGE/PROBE , 2000, Protein science : a publication of the Protein Society.

[29]  J Otlewski,et al.  Ultrahigh-resolution structure of a BPTI mutant. , 2001, Acta crystallographica. Section D, Biological crystallography.

[30]  Ian W. Davis,et al.  Structure Validation by C a Geometry : f , y and C b Deviation , 2002 .

[31]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[32]  T. Hahn International tables for crystallography , 2002 .

[33]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[34]  K. Miki,et al.  Ultrahigh-resolution structure of high-potential iron-sulfur protein from Thermochromatium tepidum. , 2002, Acta crystallographica. Section D, Biological crystallography.

[35]  Zbigniew Dauter,et al.  The structures of Micrococcus lysodeikticus catalase, its ferryl intermediate (compound II) and NADPH complex. , 2002, Acta crystallographica. Section D, Biological crystallography.

[36]  E. Zuiderweg,et al.  Temperature dependence of anisotropic protein backbone dynamics. , 2003, Journal of the American Chemical Society.

[37]  Ad Bax,et al.  Insights into the mobility of methyl-bearing side chains in proteins from (3)J(CC) and (3)J(CN) couplings. , 2003, Journal of the American Chemical Society.

[38]  L. Looger,et al.  Computational design of receptor and sensor proteins with novel functions , 2003, Nature.

[39]  J. Hermans,et al.  Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine “dipeptides” (Ace‐Ala‐Nme and Ace‐Gly‐Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution , 2003, Proteins.

[40]  Robert A Bonomo,et al.  Ultrahigh resolution structure of a class A beta-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. , 2003, Journal of molecular biology.

[41]  CRYSTALLOGRAPHY AT (SUB) ATOMIC RESOLUTION AND QUANTUM CHEMISTRY REVEALING DETAILS OF CATALYSIS , 2003 .

[42]  Samuel Krimm,et al.  Potential energy functions: From consistent force fields to spectroscopically determined polarizable force fields , 2003, Biopolymers.

[43]  W. B. Arendall,et al.  New tools and data for improving structures, using all-atom contacts. , 2003, Methods in enzymology.

[44]  J. Cooper,et al.  Atomic resolution analysis of the catalytic site of an aspartic proteinase and an unexpected mode of binding by short peptides , 2003, Protein science : a publication of the Protein Society.

[45]  A. H. Wang,et al.  The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. , 2003, Biophysical journal.

[46]  M. DePristo,et al.  Ab initio construction of polypeptide fragments: Efficient generation of accurate, representative ensembles , 2003, Proteins.

[47]  Anna Tramontano,et al.  Assessment of homology‐based predictions in CASP5 , 2003, Proteins.

[48]  Geoffrey I. Webb,et al.  NMR of proteins and nucleic acids , 2005 .

[49]  E. Getzoff,et al.  Anticipatory active-site motions and chromophore distortion prime photoreceptor PYP for light activation , 2003, Nature Structural Biology.

[50]  Honggao Yan,et al.  Dynamic roles of arginine residues 82 and 92 of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: crystallographic studies. , 2003, Biochemistry.

[51]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[52]  Stephen L Mayo,et al.  Repacking the Core of T4 lysozyme by automated design. , 2003, Journal of molecular biology.

[53]  Inari Kursula,et al.  Crystal Structure of Triosephosphate Isomerase Complexed with 2-Phosphoglycolate at 0.83-Å Resolution* , 2003, The Journal of Biological Chemistry.

[54]  A. Palmer,et al.  NMR characterization of the dynamics of biomacromolecules. , 2004, Chemical reviews.

[55]  T. A. Jones,et al.  The Uppsala Electron-Density Server. , 2004, Acta crystallographica. Section D, Biological crystallography.

[56]  Z. Derewenda,et al.  The PDZ2 domain of syntenin at ultra-high resolution: bridging the gap between macromolecular and small molecule crystallography. , 2004, Journal of molecular biology.

[57]  David C. Richardson,et al.  MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes , 2004, Nucleic Acids Res..

[58]  David Baker,et al.  Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  G. Petsko,et al.  Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift. , 2004, Biochemistry.

[60]  D. Agard,et al.  The 0.83 A resolution crystal structure of alpha-lytic protease reveals the detailed structure of the active site and identifies a source of conformational strain. , 2004, Journal of molecular biology.

[61]  R E Cachau,et al.  Ultrahigh resolution drug design I: Details of interactions in human aldose reductase–inhibitor complex at 0.66 Å , 2004, Proteins.

[62]  Z. Derewenda,et al.  The PDZ2 domain of syntenin at ultra-high resolution: bridging the gap between small molecule and macromolecular crystal chemistry , 2004 .

[63]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[64]  Jack Snoeyink,et al.  Probik: Protein Backbone Motion by Inverse Kinematics , 2005, WAFR.

[65]  L. Kay,et al.  NMR studies of protein structure and dynamics. , 2005, Journal of magnetic resonance.

[66]  Shuren Wang,et al.  A test of enhancing model accuracy in high-throughput crystallography , 2005, Journal of Structural and Functional Genomics.

[67]  Jack Snoeyink,et al.  Probik: Protein Backbone Motion by Inverse Kinematics , 2005 .

[68]  Itay Lotan,et al.  Real-space protein-model completion: an inverse-kinematics approach. , 2005, Acta crystallographica. Section D, Biological crystallography.

[69]  Robert Huber,et al.  Structure quality and target parameters , 2006 .

[70]  D. Brann,et al.  Transforming growth factor-β , 2007, Cell Biochemistry and Biophysics.

[71]  High‐Throughput Crystallography , 2008 .