Microrobotics: Present, challenges, perspectives

The field of micro-robotics has made enormous progress in recent years. The progress in micro- and nano-technologies have enabled the micro-electro-mechanical systems (MEMS) actuators and sensors. A developing field has recently appeared in the nano- and micro- technologies, the untethered, micro-robots, which present potential applications in diagnosis and targeted drug delivery, implantation of active structures, and material removal. Many technologies must be developed and synergistically integrated to realize the types of applications envisioned including device design and control, device localization, fabrication and power supplying. This article presents an microrobotics perspective and the main methods for actuation. The major current challenges consist in innovating efficient remote power sourcing and proper locomotion mechanisms. Drive, control and propelling such devices require overcoming the nonlinear physics at this scale. Then, the ability to accurately maneuvering them represents the next challenge.

[1]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[2]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[3]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[4]  Isao Shimoyama,et al.  Microrobot locomotion in a mechanical vibration field , 1994, Adv. Robotics.

[5]  Sandro Erni,et al.  MiniMag: A Hemispherical Electromagnetic System for 5-DOF Wireless Micromanipulation , 2010, ISER.

[6]  Metin Sitti,et al.  Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces , 2011, 2011 IEEE International Conference on Robotics and Automation.

[7]  Wenqi Hu,et al.  Micro-assembly using optically controlled bubble microrobots , 2011 .

[8]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[9]  Micky Rakotondrabe,et al.  First experiments on MagPieR: A planar wireless magnetic and piezoelectric microrobot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[10]  Ron Pelrine,et al.  Diamagnetically levitated robots: An approach to massively parallel robotic systems with unusual motion properties , 2012, 2012 IEEE International Conference on Robotics and Automation.

[11]  Jake J. Abbott,et al.  OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation , 2010, IEEE Transactions on Robotics.

[12]  Max T. Hou,et al.  Development of rolling magnetic microrobots , 2010 .

[13]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009, ISRR.

[14]  A. Kay MagMites design , fabrication , and control of wireless resonant magnetic micromachines for dry and wet environments , 2011 .

[15]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[16]  Alexey Snezhko,et al.  Magnetic manipulation of self-assembled colloidal asters. , 2011, Nature materials.

[17]  Vijay Kumar,et al.  Wireless manipulation of single cells using magnetic microtransporters , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  M. Puig-Vidal,et al.  Smart Power Integrated Circuit for a Piezoelectric Miniature Robot , 2002 .

[19]  Dan O. Popa,et al.  A four degree of freedom microrobot with large work volume , 2009, 2009 IEEE International Conference on Robotics and Automation.

[20]  Xi Chen,et al.  A magnetic thin film microrobot with two operating modes , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Russell M. Taylor,et al.  Thermally actuated untethered impact-driven locomotive microdevices , 2006 .

[22]  T. Higuchi,et al.  Micro impact drive mechanisms using optically excited thermal expansion , 1997 .

[23]  Michaël Gauthier,et al.  An electromagnetic micromanipulation system for single-cell manipulation , 2002 .

[24]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[25]  S. Senturia Microsystem Design , 2000 .

[26]  Vijay Kumar,et al.  Modeling, control and experimental characterization of microbiorobots , 2011, Int. J. Robotics Res..

[27]  Anna Mathesz,et al.  Light sailboats: Laser driven autonomous microrobots , 2012, 1211.2653.

[28]  Ivan Penskiy,et al.  Toward fluidic microrobots using electrowetting , 2012, 2012 IEEE International Conference on Robotics and Automation.

[29]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.