Realization of associative products in terms of Moyal and tomographic symbols

The quantizer–dequantizer method allows us to construct associative products on any measure space. In this paper, we consider an inverse problem: given an associative product is it possible to realize it within the quantizer–dequantizer framework? The answer is positive in finite dimensions and we give a few examples in infinite dimensions.

[1]  Kevin Cahill,et al.  DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS. , 1969 .

[2]  Star products, duality and double Lie algebras , 2006, quant-ph/0609041.

[3]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[4]  R. Shankar,et al.  Principles of Quantum Mechanics , 2010 .

[5]  C. Zachos,et al.  An atavistic Lie algebra , 2006, hep-th/0603017.

[6]  A. P. Vinogradov,et al.  PT-symmetry in optics , 2014 .

[7]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[8]  Alternative commutation relations, star products and tomography , 2001, quant-ph/0112110.

[9]  L. Landau Das Dämpfungsproblem in der Wellenmechanik , 1927 .

[10]  M. Kontsevich Deformation Quantization of Poisson Manifolds , 1997, q-alg/9709040.

[11]  J. Neumann Mathematische Begründung der Quantenmechanik , 2022 .

[12]  A. Ibort,et al.  An introduction to the tomographic picture of quantum mechanics , 2009, 0904.4439.

[13]  J. Neumann Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik , 1927 .

[14]  F. Bayen,et al.  Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .

[15]  Quantum Bi-Hamiltonian Systems , 2000, math-ph/0610011.

[16]  P. Dirac Principles of Quantum Mechanics , 1982 .

[17]  V. Man'ko,et al.  Star-Product of Generalized Wigner-Weyl Symbols on SU(2) Group, Deformations, and Tomographic Probability Distribution , 2000 .

[18]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[19]  Olga V. Man'ko,et al.  Quantum states in probability representation and tomography , 1997 .

[20]  F. Bayen,et al.  Deformation theory and quantization. II. Physical applications , 1978 .

[21]  B. Fedosov A simple geometrical construction of deformation quantization , 1994 .

[22]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  V. I. Man'ko,et al.  Symplectic tomography as classical approach to quantum systems , 1996 .