Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes

The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding quantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the traditional quantum error correcting subspace codes. These new quantum error correcting subsystem codes differ from subspace codes in that their quantum correcting routines can be considerably simpler than related subspace codes. Here we present a class of quantum error correcting subsystem codes constructed from two classical linear codes. These codes are the subsystem versions of the quantum error correcting subspace codes which are generalizations of Shor's original quantum error correcting subspace codes. For every Shor-type code, the codes we present give a considerable savings in the number of stabilizer measurements needed in their error recovery routines.

[1]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[2]  R. Landauer Is quantum mechanics useful , 1995 .

[3]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[4]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[5]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[6]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[7]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[8]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[9]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[11]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[12]  Institute for Scientific Interchange Foundation,et al.  Stabilizing Quantum Information , 1999 .

[13]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[14]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[15]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[16]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[17]  T. Rudolph,et al.  Classical and quantum communication without a shared reference frame. , 2003, Physical review letters.

[18]  D. Bacon,et al.  The Quantum Schur Transform: I. Efficient Qudit Circuits , 2005, quant-ph/0601001.

[19]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[20]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[21]  D. Bacon,et al.  Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.

[22]  R. Spekkens,et al.  Quantum Error Correcting Subsystems are Unitarily Recoverable Subsystems , 2006, quant-ph/0608045.

[23]  Frederic T. Chong,et al.  Quantum Memory Hierarchies: Efficient Designs to Match Available Parallelism in Quantum Computing , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[24]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[25]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[26]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[27]  M. Nielsen,et al.  Algebraic and information-theoretic conditions for operator quantum error correction , 2005, quant-ph/0506069.

[28]  Pradeep Kiran Sarvepalli,et al.  Clifford Code Constructions of Operator Quantum Error-Correcting Codes , 2006, IEEE Transactions on Information Theory.

[29]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .