Count(q) Does Not Imply Count(p)

Abstract It is shown that the elementary principles Count( ifq ) and Count( ifp ) are logically independent in the system IΔ 0 ( α ) of Bounded Arithmetic. More specifically it is shown that Count( ifq ) implies Count( ifp ) exactly when each prime factor in p is a factor in q .

[1]  Sten Agerholm LCF Examples in HOL , 1995, Comput. J..

[2]  Søren Riis Count(q) does not imply Count(p) , 1994 .

[3]  A. Wilkie,et al.  Counting problems in bounded arithmetic , 1985 .

[4]  Jan Krajícek,et al.  An Exponenetioal Lower Bound to the Size of Bounded Depth Frege Proofs of the Pigeonhole Principle , 1995, Random Struct. Algorithms.

[5]  Glynn Winskel,et al.  Petri Nets and Bisimulations , 1994 .

[6]  Samuel R. Buss Polynomial Size Proofs of the Propositional Pigeonhole Principle , 1987, J. Symb. Log..

[7]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .

[8]  Arne Skou,et al.  Automatic Verification of Real-Timed Systems Using EPSILON , 1994 .

[9]  Jan Krajícek,et al.  Exponential Lower Bounds for the Pigeonhole Principle , 1992, STOC.

[10]  Søren Riis Count( $q$) versus the pigeon-hole principle , 1997, Arch. Math. Log..

[11]  Toniann Pitassi,et al.  An exponential separation between the matching principle and the pigeonhole principle , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[12]  Alexander A. Razborov,et al.  On the method of approximations , 1989, STOC '89.

[13]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[14]  Benedetto Intrigila,et al.  Combinatorial Principles in Elementary Number Theory , 1991, Ann. Pure Appl. Log..

[15]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[16]  Miklós Ajtai,et al.  The independence of the modulo p counting principles , 1994, STOC '94.

[17]  Søren Riis Finitisation in Bounded Arithmetic , 1994 .

[18]  David A. Mix Barrington,et al.  Representing Boolean functions as polynomials modulo composite numbers , 1992, STOC '92.

[19]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[20]  Søren Riis Count(q) versus the Pigeon-Hole Principle , 1994 .

[21]  Lars Arge,et al.  External-Storage Data Structures for Plane-Sweep Algorithms , 1994 .

[22]  J. Kraj,et al.  On Frege and Extended Frege Proof Systems , 1993 .

[23]  Peter D. Mosses,et al.  An Action Semantics for ML Concurrency Primitives , 1994, FME.

[24]  Allan Cheng,et al.  Local Model Checking and Traces , 1994 .

[25]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[26]  Russell Impagliazzo,et al.  Exponential lower bounds for the pigeonhole principle , 1992, STOC '92.

[27]  Nils Klarlund,et al.  The Limit View of Infinite Computations , 1994, CONCUR.

[28]  Glynn Winskel Stable Bistructure Models of PCF , 1994, MFCS.

[29]  Jeff B. Paris,et al.  Provability of the Pigeonhole Principle and the Existence of Infinitely Many Primes , 1988, J. Symb. Log..

[30]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[31]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[32]  Miklós Ajtai,et al.  The complexity of the Pigeonhole Principle , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.