Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst

[1]  S. Pedersen,et al.  Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose–fructose mixtures , 2015 .

[2]  Li Liu,et al.  Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid. , 2015, Carbohydrate polymers.

[3]  N. Amin,et al.  Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance , 2015 .

[4]  C. Ratanatawanate,et al.  Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water , 2014 .

[5]  Jian Zhang,et al.  Kinetic studies on chromium-catalyzed conversion of glucose into 5-hydroxymethylfurfural in alkylimidazolium chloride ionic liquid , 2014 .

[6]  J. Leahy,et al.  Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. , 2013, Bioresource technology.

[7]  F. Chang,et al.  Immobilizing Cr3+ with SO3H-functionalized solid polymeric ionic liquids as efficient and reusable catalysts for selective transformation of carbohydrates into 5-hydroxymethylfurfural. , 2013, Bioresource technology.

[8]  K. Han,et al.  Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts , 2013 .

[9]  N. Amin,et al.  Characterization and performance of hybrid catalysts for levulinic acid production from glucose , 2013 .

[10]  Ningbo Gao,et al.  Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam , 2013 .

[11]  Ed de Jong,et al.  Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. , 2013, Chemical reviews.

[12]  James J. Leahy,et al.  A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid , 2013 .

[13]  Y. Liu,et al.  Characterization of ZSM-5 during Conversion of Glucose to Levulinic Acid , 2012 .

[14]  Yongshui Qu,et al.  Efficient dehydration of glucose to 5-hydroxymethylfurfural catalyzed by the ionic liquid,1-hydroxyethyl-3-methylimidazolium tetrafluoroborate. , 2012, Bioresource technology.

[15]  Xiaohong Wang,et al.  One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis , 2012 .

[16]  W. Conner,et al.  Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. , 2012, ChemSusChem.

[17]  N. Amin,et al.  Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst. , 2012, Bioresource technology.

[18]  T. A. Nijhuis,et al.  The effect of solvent addition on fructose dehydration to 5-hydroxymethylfurfural in biphasic system over zeolites , 2012 .

[19]  Lu Lin,et al.  Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid , 2012 .

[20]  J. Tanskanen,et al.  Kinetics of glucose decomposition in formic acid , 2011 .

[21]  C. Xu,et al.  Catalytic conversion of glucose to 5-hydroxymethyl furfural using inexpensive co-catalysts and solvents. , 2011, Carbohydrate research.

[22]  Catherine Pinel,et al.  Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid , 2011 .

[23]  G. Tompsett,et al.  Investigation into the shape selectivity of zeolite catalysts for biomass conversion , 2011 .

[24]  Yugen Zhang,et al.  Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl system , 2011 .

[25]  Darryn W. Rackemann,et al.  The conversion of lignocellulosics to levulinic acid , 2011 .

[26]  Lu Lin,et al.  Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides , 2010, Molecules.

[27]  Akshay D. Patel,et al.  Techno-economic analysis of 5-nonanone production from levulinic acid. , 2010 .

[28]  Xiaoli Zhan,et al.  Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions , 2010 .

[29]  马晓建,et al.  Kinetic Studies on Wheat Straw Hydrolysis to Levulinic Acid , 2009 .

[30]  A. Rauter,et al.  Zeolites as efficient catalysts for key transformations in carbohydrate chemistry , 2009 .

[31]  L. Janssen,et al.  Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. , 2008, Bioresource technology.

[32]  Julian R.H. Ross,et al.  The Biofine Process – Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks , 2008 .

[33]  Hiroyuki Yoshida,et al.  Kinetics of the Decomposition of Fructose Catalyzed by Hydrochloric Acid in Subcritical Water: Formation of 5-Hydroxymethylfurfural, Levulinic, and Formic Acids , 2007 .

[34]  Qi Jing,et al.  Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water , 2007 .

[35]  B. Girisuta,et al.  Levulinic acid from lignocellulosic biomass , 2007 .

[36]  Leon P.B.M. Janssen,et al.  A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid , 2006 .

[37]  Leon P.B.M. Janssen,et al.  Green Chemicals: A Kinetic Study on the Conversion of Glucose to Levulinic Acid , 2006 .

[38]  马晓建,et al.  Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature , 2006 .

[39]  B. Kuznetsov,et al.  Kinetics of levulinic acid formation from carbohydrates at moderate temperatures , 2002 .

[40]  K. Xie,et al.  Studies of the interaction between CuCl and HY zeolite for preparing heterogeneous CuI catalyst , 2001 .

[41]  C. Moreau,et al.  Selective preparation of furfural from xylose over microporous solid acid catalysts , 1998 .

[42]  Gerard Avignon,et al.  Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites , 1996 .

[43]  G. Rorrer,et al.  Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110-160 .degree.C , 1993 .

[44]  Michal Green,et al.  Kinetics of dilute acid hydrolysis of cellulose originating from municipal solid wastes , 1992 .

[45]  P. McCarty,et al.  Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates , 1988, Biotechnology and bioengineering.

[46]  Martin C. Hawley,et al.  Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst , 1987 .

[47]  J. Horvat,et al.  Mechanism of levulinic acid formation , 1985 .

[48]  David R. Thompson,et al.  Design and Evaluation of a Plug Flow Reactor for Acid Hydrolysis of Cellulose , 1979 .

[49]  Andrew Porteous,et al.  Kinetics of the acid hydrolysis of cellulose found in paper refuse , 1971 .

[50]  Jerome F. Saeman,et al.  Kinetics of Wood Saccharification - Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature , 1945 .